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Introduction

> Learning can be considered as a process of forming associations
between related patterns.

» For example visual image may be associated with another visual
image, or the fragrance of fresh-mown grass may be associated with a
visual image of feeling

» Memorization of a pattern could be associating the pattern with itself

» Therefore, in such networks the input pattern cause an output pattern
which may be similar to the input pattern or related to that.

» An important characteristic of the association is that an input
stimulus which is similar to the stimulus for the association will invoke
the associated response pattern.
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For example, if we learn to read music, so that we associate with
fingering on a stringed instrument, we do not need to see the same
form of musical note we originally learned

» If the note is larger, or handwritten , we still can recognize and play.
» So after learning it is expected to make a good guess and provide
appropriate repose

» Another example, ability to recognize a person either in person or
form a photo even his/her appearance has been changed

» This is relatively difficult to program by a traditional computer algs.

» Associative memories belong to class of NN that learn according to a
certain recording algs.

» They require information a priori and their connectivity matrices
(weights) most often need to be formed in advance

» Writing into memory produces changes in the neural interconnections

» Reading of the stored info from memory named recall, is a
transformation of input signals by the network

Farzaneh Abdollahi Computational Intelligence Lecture 16 4/31



Amirkabir

Outline  Introduction ) ent-Type Hopfield Network T

> Not usable addressing schemes exits In an assoclative memory

» All memory info is spatially distributed throughout the network
» The biological memory operates the same

> Associative memory enables a parallel search within a stored data

» The purpose of search is to output one or all stored items that matches
the search argument and retrieve it entirely or partially

» The fig. depicts a block diagram of an associative memory.
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=[x % e 5

v=[nv,...v,]"

» The transformation is v = M[x], M: a nonlinear matrix operator
which has different meaning for each of memory models.
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For dynami ies, M is time variable.
» v is available in output at a later time than the input has been applied

» For a given memory model, M is usually expressed in terms of given
prototype vectors that should be stored

The algs of finding M are called recording or storage algs.

The mapping in v = M[x] preformed on x is called a retrieval.
Retrieval may provide a desired/an undesired solution prototype
To have efficient retrieval some mechanisms should be developed
Assume there are p stored pairs: x() — v() for i=1,...,p

If x(1) % v for i =1, ..., pitis called heteroassociative memory

If x() = v for j =1, ..., p it is called autoassociative memory

vV VvV vV VvV vV VvV VY

Obviously the mapping of a vector x{) into itself cannot be of any
significance

» A more realistic application of autoassociative memory is recovery of
undistorted prototype in response to a distorted prototype vector.
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> Associative memory which uses NN concepts may resemble digital
computer memory

» Let us compare their difference:

» Digital memory is address-addressable memory:
> data have input and output lines

> a word line access the entire row of binary cells containing word date
bits.
> activation takes place when the binary address is decoded by an address
decoder.
Address lines Data input

word 1

l&...l PRI

—> word 2
— F——
Address . . Data e ' - \ . Data
decoder . . input % . output

l—

word p

lines y

Data output

(a) (b)

Addressing modes for memories: (a) address-addressable memory and (b) content-
addressable memory.
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> Associative memory is content addressable memory

> the words are accessed based on the content of the key vector

» When the network is excited by a portion of the stored date, the
efficient response of autoassociative memory is the completed x(/)
vector

» In hetroassociative memory the content of x() provides the stored
vector v(?)

» There is no storage for prototype x() or v{) at any location of network

» The entire mapping is distributed in the network.

» The mapping is implemented through dense connections, feedback
or/and a nonlinear thresholding operation

» Associative network memory can be

» Static: networks recall an output response after an input has been
applied in one feedforward pass, and, theoretically, without delay. They
were termed instantaneous

» Dynamic: memory networks produce recall as a result of output/input
feedback interaction, which requires time.
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» Static memory
» implement a feedforward operation of mapping without a feedback, or
recursive update, operation.
» They are sometimes also called non-recurrent
» The mapping can be expressed as f
vk = /\/Il[xk]

where k: index of recursion, M; operator symbol

» Dynamic memory
» exhibit dynamic evolution in the sense that they converge to an
equilibrium state according to the recursive formula
VL = My [xK, vA]

This is a nonlinear difference equation.

Hopfield model is an example of a recurrent network for which the input

x° is used to initialize v°, i.e., x> = v°, and the input is then removed.
» So the formula will be simplified to

Vk+1 _ Mg[Vk]
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Block diagram rep tation of associative : (a) feedforward network, (b)

recurrem autoassociative network, and (c) recurrent heteroassociative network.
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Hopfield Networks

> It is a special type of Dynamic Network that v9 = x°, i.e.,

vkl — M[vk]
» It is a single layer feedback network which was first introduced by
John Hopfield (1982,1988)

> Neurons are with either a hard-limiting activation function or with a
continuous activation function (TLU)

» In MLP:

» The weights are updated gradually by teacher-enforced which was
externally imposed rather than spontaneous

» The FB interactions within the network ceased once the training had
been completed.

» After training, output is provided immediately after receiving input
signal
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» In FB networks:

» the weights are usually adjusted spontaneously.

» Typically, the learning of dynamical systems is accomplished without a
teacher.

> i.e., the adjustment of system parameters does not depend on the
difference between the desired and actual output value of the system
during the learning phase.

» To recall information stored in the network, an input pattern is applied,
and the network's output is initialized accordingly.

» Next, the initializing pattern is removed and the initial output forces
the new, updated input through feedback connections.

» The first updated input forces the first updated output. This, in turn,
produces the second updated input and the second updated response.

» The transition process continues until no new updated responses are
produced and the network has reached its equilibrium.

» . These networks should fulfill certain assumptions that make the
class of networks stable and useful, and their behavior predictable in
most cases.
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» FB in the network

» allows for great reduction of the complexity.
» Deal with recalling noisy patterns
» Hopfield networks can provide
associations or classifications
optimization problem solution
restoration of patterns
In general, as with perceptron networks, they can be viewed as mapping
networks

>
>
>
>

> One of the inherent drawbacks of dynamical systems is:

» The solutions offered by the networks are hard to track back or to
explain.
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> w;j;: the weight value
connecting the output of the
Jth neuron with the input of
the /th neuron

W = {w;;} is weight matrix
V = [v1,...,va] T is output
vector

k1

> net = [nety, .., net,]T = Wv

vt = sgn(3o] wivf)
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» W is defined:
0 wip wiz ... wiyp
Wo1 0 Wo3 ... Wop
W=| wsr w2 0 ... w3
| Wn1 Wp2 Wz ... 0|

» It is assumed that W is symmetric, i.e., w;j = w;i
» w;; = 0, i.e., There is no self-feedback

» The output is updated asynchronously. This means that

» For a given time, only a single neuron (only one entry in vector V ) is
allowed to update its output
» The next update in a series uses the already updated vector V.
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Xampie. In this example output vector Is started wi
VO, the updated by m, p and g respectively:

1 _ 0 0 1 0.0 01T
Vi = [ vy .o vy v, vy vyl
2 0 0 1 2.0 01T
Ve = [ vy vy vy g v,]
3 _ 0.0 1.2 .3 017
V= [ vy vy vy v v,]

» The vector of neuron outputs V in n-dimensional space.

» The output vector is one of the vertices of the n-dimensional cube
[-1,1] in E" space.

» The vector moves during recursions from vertex to vertex, until it
stabilizes in one of the 2" vertices available.

» To evaluate the stability property of the dynamical system of interest,
let us study a so-called computational energy function.

» This is a function usually defined in n-dimensional output space v
E = —%VTWV
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Example

» A 10 x 12 bit map of black
and white pixels representing _ ]
the digit 4.

» The initial, distorted digit 4
with 20% of the pixels
randomly reversed.

@ (C] 6]

Example of recursive asynchronous update of corrupted digit 4. (a) k = 0,
B k=1(k=2(dk=3(e)k=4and () k=5
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tate tra nsiti.c.;n“r;{afouara
memory network is shown

» Each node of the graph is
equivalent to a state and
has one and only one edge
leaving it. ¥* Initial

» If the transitions terminate
with a state mapping into
itself, A, then the
equilibrium A is fixed point.

yot oyt

» If the transitions end in a
cycle of states, B, then we
have a limit cycle solution
with a certain period.

» The period is defined as
the length of the cycle.
(3 in this example)

L ]
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Energy function was defined as E = —%VTWV

In bipolar notation the complement of vector v is —v
cE(=v)=-3vTwy

E(v) = E(—v)~ min E(v) = min E(—v)

The memory transition may end up to v as easily as —v

vV v vV V. VvY

The similarity between initial output vector and v and —v determines
the convergence.
» It has been shown that synchronous state updating algorithm may

yield persisting cycle states consisting of two complimentary patterns
(Kamp and Hasler 1990)

Farzaneh Abdollahi Computational Intelligence Lecture 16 19/31



Introduction  Dynamic Memory ent-Type Hopfield Network
Q00000000800

Example 1. Consider W = { _01 _01 } V0= {

V! = sgn(W) = sgn({ 2 _01 ] [ -

1
1
vzzsgn(WV):Sg”({ol ol]“]):[”

v0 = vl It provides a cycle of two states rather than a fix point

0 1 1 -1
1 0 1 -1

Example 2: Consider W = 1 1 0 -1

-1 -1 -1 0
The energy function becomes
0 1 1 -1 Vi
1 0 1 -1 Vo
EM==alwwwull 1 1 o 1|,
-1 -1 -1 0 V4

—vi(va+v3—vg) — va(vz — vg) + vy
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» It can be verifying
that all possible ©
energy levels are &
-6, 0, 2

» Each edge of the
state diagram shows
a single asynchronous
state transition.

» Energy values are
marked at cube
vertexes

[-1F
@

» By asynchronous

updates, finally the e 1

. (U]

energy ends up to its
min value -6.

(Energy values in parentheses)

Energy levels and state transitions for the network
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» Applying synchronous update:
» Assume O =[1 —111]"
» vi=sgn(WW0) =[-11 -1 —1]
» v =sgn(W)=[1 —111]=°
» Storage Algorithm
» For bipolar prototype vectors: the weight is calculated:
W =3P sMsmMT _plorw;=(1-6;)%" s™s m)
1 i=j
0 i#j
» |If the prototype vectors are unipolar, the the memory storage alg. is
modified as w; = (1 — 05) 320, (2™ — 1)(2s™ — 1)
» The storage rule is invariant with respect to the sequence of storing
pattern
» Additional patterns can be added at any time by superposing new
incremental weight matrices

> §;; is Kronecker function: d; = {
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Gradient-Type Hopfield Network

» Gradient-type neural networks are generalized Hopfield networks in
which the computational energy decreases continuously in time.

> Gradient-type networks converge to one of the stable minima in the
state space.

» The evolution of the system is in the general direction of the negative
gradient of an energy function.

> Typically, the network energy function is equivalent to a certain
objective (penalty) function to be minimized.

» These networks are examples of nonlinear, dynamical, and
asymptotically stable systems.

» They can be considered as a solution of an optimization problem.
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» The model of a
gradient-type neural system
using electrical components i i i :

is shown in Fig. A -
4 3
» |t has n neurons, 7 7 3
» each neuron mapping its ™ ¢
input voltage u; into the N
output voltage v; through . . . .
the activation function _ml_ml-ml 5 _m_l
f(uj), A o R AL I
» f(u;) is the common static T/
voltage transfer

characteristic (VTC) of the .
neuron.

-
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» Conductance w;; connects the output of the jth neuron to the input of
the ith neuron.

» The inverted neuron outputs V; representing inverting output is
applied to avoid negative conductance values w;;

» Note that in Hopefield networks:

» w;; = 0~>, the outputs of neurons are not connected back to their own
inputs

» Capacitances C;, for i = 1,2, ..., n, are responsible for the dynamics of
the transients in this model.
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» KCL equ. for each node is

n

. du

I + E VV,JVJ — U,'( E Wij —i—g,-) = Ciidt (1)
J#i JFi

» Considering G; = Z]:l wij + gi, C = diag[Cy, Co, ..., Cp),
G =[Gy, ..., G,], the output equ. for whole system is
du
CE = Wv(t) — Gu(t)+1/ (2)
v(t) = flu(t)]

Wy
v ._Ivv\/_

—_—
(G

) vi

Y
— —o} le g
. Gy I

. -

w,

(
v _w)w,
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» The energy to be minimized is
E(v)=—-iviWwv —iv+ 130 G [y £ (2)dz
> The Hopf|eld networks can be applied for optimization problems.

> The challenge will be defining W and [ s.t. fit the dynamics and
objective of the problem to (2) and above equation.
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Example: Traveling Salesman Tour Length [1]

> The problem is min tour length through a number of cities with only
one visit of each city

» If nis number of cities (n — 1)! distinct path exists

> Let us use Hopefiled network to find the optimum solution

» We are looking to find a matrix shown in the fig.

> n rows are the cities

» n columns are the position of the salesman

» each city/position can take 1 or 0

» v = 1 means salesman in its jth position is in ith city

» The network consists n? unipolar neurons

» Each city should be visited once ~~ only one single 1 at each row and
column
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(o] Tele]

Pos. 2 A 0 1 0 0 0 5
Pos. 1 BlojJoflojt]ol]a4
—> Pos. 3 2
E g2 C 0 0 0 0 1 3
Q
D 0 0 1 1] 0 2
Pos. 5 E 1 0 0 0 0 1
C Pos. 4

1 2 3 4 5
Position, x
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We should define w and i such that the energy of the Hopfield
network represent the objective we are looking for

» Recall the energy of Hoefiled network:
1 .
E(v) = =3 > xi 2ovj WXi,Y;VXiVYj — Do xi iXiVXi
» The last term is omitted for simplicity

> Let us express our objective in math:

Ev =AY x> vxivxj for i # j

Ex =B ;> x> yvxivyi for X #Y

E;1 be zero ~» each row has at most one 1

E> be zero ~ each column has at most one 1

Es = C(Xx Xivxi — n)?

E3 guarantees that there is at least one 1 at each column and row.
Es=D) x> v > idxyvxi(vy,it1 + vy,i-1), X#Y

E, represents minimizing the distances

vV v vV V. vV VY

dxy is distance between city X and Y
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v

Recall the energy of Hoefiled network:
E(v) = =3 2xi 2oyj WXi,Y; VXiVyj — D x; IXiVXi
The weights can be defined as follows

v

Wx,',yj = —2A(Sxy(1—(5,'j)—2B(5U(1—(5xy)—2C—2Ddxy((5j7,‘+1+5jxj,1)
> in =2Cn
» Positive consts A, B, C, and D are selected heuristically
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[d J. J. Hopfield and D. W. Tank, “Neural computation of
decisions in optimization problems,” Biolog. Cybern, vol. 52 ,
pp. 141-154, 1985.
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