

Computational Intelligence Lecture 15: Fuzzy Systems as Nonlinear Mapping

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

伺下 くヨト くヨト

Some Classes of Fuzzy Systems

Fuzzy Systems as Universal Approximators

Design of a Fuzzy Approximator

э

E. 1. E. 1.

- Among 45 types of fuzzy systems obtained by combining different types of inference engines (5), fuzzifiers (3), and defuzzifiers (3) just some of them are useful.
- ► Fuzzy Systems with Center Average Defuzzifier
 - Suppose that the output fuzzy set B^{l} is normal with center \bar{y}^{l} . Then the fuzzy systems with
 - canonical fuzzy rule base,
 - product inference engine,
 - singleton fuzzifier,
 - center average defuzzifier

are of the following form:

$$f(x) = \frac{\sum_{l=1}^{M} \bar{y}^{l}(\prod_{i=1}^{n} \mu_{A_{i}^{\prime}}(x_{i}^{*}))}{\sum_{l=1}^{M}(\prod_{i=1}^{n} \mu_{A_{i}^{\prime}}(x_{i}^{*}))}$$
(1)

マボト イラト イラト

where $x \in U \subset R^n$ is input; $f(x) = y^* \in V \subset R$ is output

- Fuzzy Systems with Center Average Defuzzifier
 - Suppose that the output fuzzy set B^{l} is normal with center \bar{y}^{l} . Then the fuzzy systems with
 - canonical fuzzy rule base,
 - product inference engine,
 - singleton fuzzifier,
 - center average defuzzifier

are of the following form:

$$f(x) = \frac{\sum_{l=1}^{M} \bar{y}^{l}(\prod_{i=1}^{n} \mu_{A_{i}^{l}}(x_{i}^{*}))}{\sum_{l=1}^{M}(\prod_{i=1}^{n} \mu_{A_{i}^{l}}(x_{i}^{*}))}$$
(1)

where $x \in U \subset R^n$ is input; $f(x) = y^* \in V \subset R$ is output

- ► Using singleton fuzzifier and product inf. eng. $\mu_{B'}(y) = \max_{l=1}^{M} [\prod_{i=1}^{n} \mu_{A_{i}^{l}}(x_{i}^{*}) \mu_{B^{l}}(y)]$
- ► Assume for *I*th rule, \bar{y}^{I} is the center, since B^{I} is normal, height of \bar{y}^{I} is $\prod_{i=1}^{n} \mu_{A_{i}^{I}}(x_{i}^{*}) \mu_{B^{I}}(y) = \prod_{i=1}^{n} \mu_{A_{i}^{I}}(x_{i}^{*})$
- Define $y^* = f(x)$ and using center of average defuzzifier yields (1)

- Using (1), one can provide a systematic procedure for transforming a set of linguistic rules into a nonlinear mapping.
- ▶ The most popular mem. fcn of $\mu_{A'_i}, \mu_{B'}$ is Gaussian:

$$\mu_{A_i^l}(x_i) = a_i^l exp[-(\frac{x_i - \bar{x}_i^l}{\sigma_i^l})^2]$$

$$\mu_{B^l}(y) = exp[-(y - \bar{y}^l)^2]$$

$$\therefore f(x) = \frac{\sum_{l=1}^{M} \bar{y}^{l} (\prod_{i=1}^{n} a_{i}^{l} exp[-(\frac{x_{i} - \bar{x}_{i}^{l}}{\sigma_{i}^{l}})^{2}])}{\sum_{l=1}^{M} (\prod_{i=1}^{n} a_{i}^{l} exp[-(\frac{x_{i} - \bar{x}_{i}^{l}}{\sigma_{i}^{l}})^{2}])}$$

• Other choices could be triangular and trapezoid mem. fcn.

伺下 イヨト イヨト

(2)

- Another class of commonly used fuzzy systems is obtained by replacing the product inference engine with the minimum inference engine.
- ► A Fuzzy system with canonical fuzzy rule base
 - minimum inference engine
 - singleton fuzzifier
 - center average defuzzifier

are of the following form:

$$f(x) = \frac{\sum_{l=1}^{M} \bar{y}^{l}(\min_{i=1}^{n} \mu_{A_{i}^{l}}(x_{i}^{*}))}{\sum_{l=1}^{M}(\min_{i=1}^{n} \mu_{A_{i}^{l}}(x_{i}^{*}))}$$
(3)

- ► Since Sup_{y∈V} and min are not always interchangeable, obtaining closed-form formulas for fuzzy systems with maximum defuzzifier and Lukasiewicz, Zadeh, or Dienes-Rescher inference engines is difficult
- For such systems the output of the fuzzy system has to be computed in a step-by-step fashion:
 - computing the outputs of fuzzifier,
 - fuzzy inference engine,
 - and then defuzzifier

Fuzzy Systems as Universal Approximators

- We are interested to investigate the capability of fuzzy systems as a function approximator
- ► It is useful in controllers, decision makers, signal processors and etc.
- ► Universal Approximation Theorem Suppose that the input universe of discourse U is a compact set in Rⁿ: Then, for any given real continuous function g(x) on U and arbitrary ε > 0, there exists a fuzzy system f(x) in the form of (2) s.t. sup_{x∈U} |f(x) g(x)| < ε</p>
- ▶ **Proof:** is Obtained using Stone-Weierstrass Theorem,
- The fuzzy systems with product inference engine, singleton fuzzifier, center average defuzzifier, and Gaussian membership functions are universal approximators.

(本部) (本語) (本語)

- The universal approximator theorem guarantees only existence a fuzzy system capable in approximating any function to arbitrary accuracy.
- ▶ For engineers just knowing the existence is not enough
- They should develop such fuzzy system!!

- Depending upon the information provided, we may or may not find the optimal fuzzy system.
- Three situations can be considered:

1.

通 ト イヨ ト イヨト

3

- Depending upon the information provided, we may or may not find the optimal fuzzy system.
- Three situations can be considered:
 - 1. The analytic formula of g(x) is known.
 - If we know g(x), we do not need to estimate it → we are not investigating this

A E F A E F

- Depending upon the information provided, we may or may not find the optimal fuzzy system.
- Three situations can be considered:
 - 1. The analytic formula of g(x) is known.
 - ► If we know g(x), we do not need to estimate it → we are not investigating this
 - The analytic formula of g(x) is unknown, but ∀x ∈ U we can determine the corresponding g(x);
 - ▶ g(x) is a black box
 - Only I/O is known. no more details

(1日) (1日) (日)

- Depending upon the information provided, we may or may not find the optimal fuzzy system.
- Three situations can be considered:
 - 1. The analytic formula of g(x) is known.
 - ► If we know g(x), we do not need to estimate it → we are not investigating this
 - The analytic formula of g(x) is unknown, but ∀x ∈ U we can determine the corresponding g(x);
 - ▶ g(x) is a black box
 - Only I/O is known. no more details
 - 3. The analytic formula of g(x) is unknown and we are provided only a limited number of I/O $(x_j, g(x_j))$, where $x_j \in U$ cannot be arbitrarily chosen.
 - especially true for fuzzy control when due to stability requirements arbitrary input values may not be possible

<ロ> <回> <回> <三</p>

Preliminary Definitions

► Pseudo-Trapezoid Membership Function Let [a, d] ⊂ R. The pseudo-trapezoid membership function of fuzzy set A is a continuous function in R given by

$$\mu_{A}(x; a, b, c, d, H) = \begin{cases} I(x) & x \in [a, b) \\ H & x[b, c] \\ D(x) & x \in (c, d] \\ 0 & R - (a, b) \end{cases}$$

where

- $a \le b \le c \le d$
- $0 < H \le 1; H = 1$ if A is normal
- $0 \leq I(x) \leq 1$
- $0 \le D(x) \le 1$ a nondecreasing function in [c, d)

• Example:
$$a = d = \infty, b = c = \bar{x}$$

 $l(x) = D(x) = exp(-(\frac{x-\bar{x}}{\sigma})^2)$

They become Gaussian membership functions

Completeness of Fuzzy Sets: Fuzzy sets A¹, A², ..., A^N ∈ W ⊂ R are said to be complete on W if for any x ∈ W, there exists A_i s.t. µ_{A_i}(x) > 0.

- ► Completeness of Fuzzy Sets: Fuzzy sets $A^1, A^2, ..., A^N \in W \subset R$ are said to be complete on W if for any $x \in W$, there exists A_i s.t. $\mu_{A_i}(x) > 0$.
- Consistency of Fuzzy Sets Fuzzy sets are said to be consistent on W if µ_{Aj}(x) = 1 for some x ∈ W⇒µ_{Ai}(x) = 0∀i ≠ j

向下 イヨト イヨト

- Completeness of Fuzzy Sets: Fuzzy sets A¹, A², ..., A^N ∈ W ⊂ R are said to be complete on W if for any x ∈ W, there exists A_i s.t. µ_{A_i}(x) > 0.
- Consistency of Fuzzy Sets Fuzzy sets are said to be consistent on W if µ_{A_i}(x) = 1 for some x ∈ W⇒µ_{A_i}(x) = 0∀i ≠ j
- ► High Set of Fuzzy Set. The high set of a fuzzy set A ∈ W ⊂ R is a subset in W: hgh(A) = {x ∈ W | µ_A(x) = sup_{x'∈W} µ_A(x')}
 - If A is a normal fuzzy set with pseudo-trapezoid mem. fcn. hgh(A) = [b, c].

(日) (日) (日)

- ► Completeness of Fuzzy Sets: Fuzzy sets $A^1, A^2, ..., A^N \in W \subset R$ are said to be complete on W if for any $x \in W$, there exists A_i s.t. $\mu_{A_i}(x) > 0$.
- Consistency of Fuzzy Sets Fuzzy sets are said to be consistent on W if µ_{Aj}(x) = 1 for some x ∈ W⇒µ_{Ai}(x) = 0∀i ≠ j
- ► High Set of Fuzzy Set. The high set of a fuzzy set A ∈ W ⊂ R is a subset in W: hgh(A) = {x ∈ W | µ_A(x) = sup_{x'∈W} µ_A(x')}
 - If A is a normal fuzzy set with pseudo-trapezoid mem. fcn. hgh(A) = [b, c].
- ► Order Between Fuzzy Sets For two fuzzy sets A and B ∈ W ⊂ R, A > B if hgh(A) > hgh(B)
 - i.e., $x \in hgh(A)$ and $x' \in hgh(B) \rightarrow x > x'$

・日本 ・ヨト ・ヨト

- Lemma: If A¹, A², ..., A^N are consistent and normal fuzzy sets in W ⊂ R with pseudo-trapezoid membership functions µ_{Ai}(x; a_i, b_i, c_i, d_i)(i = 1, 2, ..., N), then there exists a rearrangement {i₁, i₂, ..., i_N} of {1, 2, ..., N} s.t. Aⁱ¹ < Aⁱ² < ... < A^{iN}
 - ► If $A^1 < A^2 < ... < A^N$, then $c_i \le a_{i+1} < d_i \le b_{i+1}$ for i = 1, 2, ..., N - 1.

• • = • • = •

Design of a Fuzzy Approximator

- Suppose $\forall x \in U$, g(x) is available.
- Objective: Approximate g(x)
 - The results can be extended for more than 2 inputs

1.

イヨトイヨト

Design of a Fuzzy Approximator

- Suppose $\forall x \in U$, g(x) is available.
- Objective: Approximate g(x)
 - The results can be extended for more than 2 inputs
- 1. Define fuzzy sets $A_i^1, A_i^2, ..., A_i^{N_i}$, i = 1, 2in $[\alpha_i, \beta_i]$ which are normal, consistent, complete with pesudo-trapezoid membership functions
 - $\mu_{A_i^1}(x_1, a_i^1, b_i^1, c_i^1, d_i^1), \dots,$ $\mu_{A_i^{N_i}}(x_i, a_i^{N_i}, b_i^{N_i}, c_i^{N_i}, d_i^{N_1})$ • $A_i^1 \in A_i^2 \subset A_i^{N_i}$

•
$$a_i^1 = b_i^1 = \alpha_i$$
 and $c_i^{N_i} = d_i^{N_i} = \beta$

► Define $e_1^1 = \alpha_1, e_1^{N_1} = \beta_1,$ $e_1^j = \frac{1}{2}(b_1^j + c_1^j)$ for $j = 2, ..., N_1 - 1$ ► $e_2^1 = \alpha_2, e_2^{N_2} = \beta_2, e_2^j = \frac{1}{2}(b_2^j + c_2^j)$ for $j = 2, ..., N_2 - 1$

→ Ξ → 4

Design of a Fuzzy Approximator

- Suppose $\forall x \in U$, g(x) is available.
- Objective: Approximate g(x)
 - The results can be extended for more than 2 inputs
- 1. Define fuzzy sets $A_i^1, A_i^2, ..., A_i^{N_i}$, i = 1, 2 $\alpha_1 = \alpha_2 = 0$, in $[\alpha_i, , \beta_i]$ which are normal, consistent, $\beta_1 = \beta_2 = 1$ complete with pesudo-trapezoid membership functions
 - $\mu_{A_i^1}(x_1, a_i^1, b_i^1, c_i^1, d_i^1), \dots,$ $\mu_{A_i^{N_i}}(x_i, a_i^{N_i}, b_i^{N_i}, c_i^{N_i}, d_i^{N_1})$
 - $A_i^1 < A_i^2 < \dots < A_i^{N_i}$

•
$$a_i^1 = b_i^1 = \alpha_i$$
 and $c_i^{N_i} = d_i^{N_i} = \beta_i$

▶ Define $e_1^1 = \alpha_1, e_1^{N_1} = \beta_1,$ $e_1^j = \frac{1}{2}(b_1^j + c_1^j)$ for $j = 2, ..., N_1 - 1$ ▶ $e_2^1 = \alpha_2, e_2^{N_2} = \beta_2, e_2^j = \frac{1}{2}(b_2^j + c_2^j)$ for $j = 2, ..., N_2 - 1$ E.g.: $N_1 = 3, N_2 = 4,$ $\alpha_1 = \alpha_2 = 0,$ $\beta_1 = \beta_2 = 1$ $A_2 = A_2 = A_$

- 4 同 1 - 4 回 1 - 4 回 1

2. Construct $M = N_1 \times N_2$ fuzzy IF-THEN rules: $Ru^{i_1i_2}$: IF x_1 is $A_1^{i_1}$ and x_2 is $A_2^{i_2}$, THEN y is $B^{i_1i_2}$

•
$$i_1 = 1, 2, ..., N_1, i_2 = 1, ..., N_2$$

- The center of fuzzy set $B^{i_1i_2}$ is $\bar{y}^{i_1i_2} = g(e_1^{j_1}, e_2^{j_2})$
- ▶ In E.g., There are $3 \times 4 = 12$ rules; $\bar{y}^{i_1 i_2}$ are the 12 dark points

伺下 くヨト くヨト

- 2. Construct $M = N_1 \times N_2$ fuzzy IF-THEN rules: $Ru^{i_1i_2}$: IF x_1 is $A_1^{i_1}$ and x_2 is $A_2^{i_2}$, THEN y is $B^{i_1i_2}$
 - $i_1 = 1, 2, ..., N_1, i_2 = 1, ..., N_2$
 - The center of fuzzy set $B^{i_1i_2}$ is $\bar{y}^{i_1i_2} = g(e_1^{i_1}, e_2^{i_2})$
 - ▶ In E.g., There are $3 \times 4 = 12$ rules; $\bar{y}^{i_1 i_2}$ are the 12 dark points
- 3. Construct the fuzzy system f(x) from the $N_1 \times N_2$ rules, using product inference engine , singleton fuzzifier ; and center average defuzzifier $f(x) = \frac{\sum_{i_1=1}^{N_1} \sum_{i_2=1}^{N_2} \bar{y}^{i_1 i_2}(\mu_{A_1}^{i_1}(x_1)\mu_{A_2}^{i_2}(x_2))}{\sum_{i_1=1}^{N_1} \sum_{i_2=1}^{N_2} (\mu_{A_1}^{i_1}(x_1)\mu_{A_2}^{i_2}(x_2))}$
 - The fuzzy sets $A_i^1 \dots A_i^{N_i}$ are complete $\rightsquigarrow f(x)$ is well defined

□ ▶ 《注》《注》