

Computational Intelligence Lecture 13:Fuzzy Logic

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

Classical Logic

Fuzzy Logic

The Compositional Rule of Inference Generalized Modus Ponens Generalized Modus Tollens Generalized Hypothetical Syllogism

Classical Logic

- Logic is the study of methods and principles of reasoning
 - reasoning means obtaining new propositions from existing propositions.
- ► In classical logic,
 - ► The propositions are evaluated by true or false.
 - ► The relationships between propositions are usually expressed by a truth table.
- ▶ Logic Formulas: is obtained by combining -, \bigvee and \bigwedge in appropriate algebraic expressions
- ► Tautology: the always true proposition represented by a logic formula, regardless of the truth values of the basic propositions participating in the formula
 - ▶ Example: $(p \rightarrow q) \leftrightarrow (\bar{p} \lor q)$
- ► Contradiction: the always false proposition represented by a logic formula, regardless of the truth values of the basic propositions participating in the formula

Classical Logic

- ► Inference rules: the forms of tautologies which are used for making deductive inferences
- ► Some commonly used inference rules are:
 - ▶ Modus Ponens: $(p \land (p \rightarrow q)) \rightarrow q$
 - ▶ Premise 1: x is A
 - ► Premise 2:IF x is A THEN y is B
 - ► Conclusion: *y* is *B*
 - ▶ Modus Tollens: $(\bar{q} \land (p \rightarrow q)) \rightarrow \bar{p}$
 - ▶ Premise 1: *y* is not *B*
 - ► Premise 2:IF *x* is *A* THEN *y* is *B*
 - ► Conclusion: *x* is not *A*
 - ▶ Hypothetical Syllogism: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
 - ▶ Premise 1: IF x is A THEN y is B
 - ▶ Premise 2: IF y is B THEN z is C
 - ► Conclusion: IF x is A THEN z is C

► In fuzzy logic

- ► The propositions are fuzzy propositions that are evaluated by memberships between 0 and 1.
- ► The ultimate goal is to provide foundations for approximate reasoning with imprecise propositions
- ► Consider A, A', B, B' are fuzzy sets
- ► The fundamental principles are
 - ► Generalized Modus Ponens:
 - ▶ Premise 1: x is A'
 - ► Premise 2: IF x is A THEN y is B
 - ▶ Conclusion y is B' s.t. the closer A' to $A \rightsquigarrow$ the closer B' to B

		x is A' (Premise 1)	y is B' (Conclusion)
e	p1	x is A	y is B
	p2	x is very A	y is very B
	рЗ	x is very A	y is B
	p4	x is more or less A	y is more or less B
	р5	x is more or less A	y is B
	р6	x is not A	y is unknown
	p7	x is not A	vis not B

► A' and B' can be

- ► The fundamental principles are
 - ▶ Generalized Modus Ponens:
 - ▶ Premise 1: x is A'
 - ► Premise 2: IF x is A THEN y is B
 - Conclusion y is B' s.t. the closer A' to $A \rightarrow$ the closer B' to B

		x is A (Premise 1)	y is B' (Conclusion)
e	p1	x is A	y is B
	p2	x is very A	y is very B
	рЗ	x is very A	y is B
	р4	x is more or less A	y is more or less B
	р5	x is more or less A	y is B
	р6	x is not A	y is unknown
	р7	x is not A	y is not B

 \triangleright A' and B' can be

- ▶ If a causal relation between "x is A" and "y is B" is not strong in Premise 2, the satisfaction of p3 and p5 is allowed.
- ▶ p7 is based on "IF x is A THEN y is B, ELSE y is not B."

Fuzzy Logic

▶ Generalized Modus Tollens:

- ▶ Premise 1: y is B'
- ▶ Premise 2: IF x is A THEN y is B
- ► Conclusion x is A' s.t. the more different B from $B' \rightsquigarrow$ the more different A from A'

► <u>A' and B' can be</u>

	y is B' (Premise 1)	x is A' (Conclusion)
t1	y is B	x is A
t2	y is not very B	x is not very A
t3	y is not more or less B	x is not more or less A
t4	y is not B	x is unknown
t5	y is not B	x is not A

► Generalized Hypothetical Syllogism:

- ► Premise 1: IF x is A THEN y is B
- ▶ Premise 2: IF y is B' THEN z is C
- ► Conclusion: IF x is A THEN z is C' s.t. the closer B to $B' \rightsquigarrow$ the closer C to C'

		y is B' (Premise 1)	z is C' (Conclusion)
	s1	y is B	z is C
	s2	y is very B	z is more or less C
e	s3	y is very B	z is C
C	s4	y is more or less B	z is very C
	s5	y is more or less B	z is C
	s6	y is not B	z is unknown
	s5	y is not B	z is not C

 \blacktriangleright A' and B' can be

- ▶ For *s*2
 - 1. change Premise 1 to IF x is very A THEN y is very B
 - 2. \therefore in Conclusion: IF x is very A THEN z is C
 - 3. To cancel very, use more or less
 - 4. \therefore IF x is A THEN z is more or less C

- D : 1 IF : A THEN : D
- ▶ Premise 1: IF x is A THEN y is B
- ▶ Premise 2: IF y is B' THEN z is C
- ► Conclusion: IF x is A THEN z is C' s.t. the closer B to $B' \leadsto$ the closer C to C'

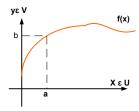
		y is B' (Premise 1)	z is C' (Conclusion)
	s1	y is B	z is C
	s2	y is very B	z is more or less C
j	s3	y is very B	z is C
	s4	y is more or less B	z is very C
	s5	y is more or less B	z is C
	s6	y is not B	z is unknown
	s5	y is not B	z is not C

ightharpoonup A' and B' can be

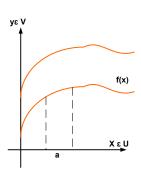
- ▶ For s2
 - 1. change Premise 1 to IF x is very A THEN y is very B
 - 2. : in Conclusion: IF x is very A THEN z is C
 - 3. To cancel very, use more or less
 - 4. \therefore IF x is A THEN z is more or less C
 - ► The mentioned intuitive criteria are based on approximate reasoning used in daily life They are not necessarily true for classical cases

 ■

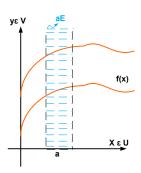
- How do we determine the membership functions of the fuzzy propositions in the conclusions?
- ► The Compositional Rule of Inference
 - It is a generalization of the following procedure
 - ▶ For a curve y = f(x) from $x \in U$ to $y \in V$
 - \blacktriangleright x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - ► First find a cylindrical set a_E with base a
 - ► find *I*: intersection of *A*_E with the interval-valued curve.
 - ► The interval b: project I on V



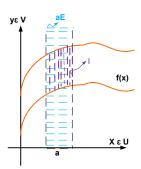
- How do we determine the membership functions of the fuzzy propositions in the conclusions?
- ► The Compositional Rule of Inference
 - It is a generalization of the following procedure
 - ▶ For a curve y = f(x) from $x \in U$ to $y \in V$
 - \blacktriangleright x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - ► First find a cylindrical set a_E with base a
 - ▶ find *I*: intersection of *A_E* with the interval-valued curve.
 - ► The interval b: project I on V



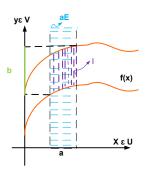
- ► How do we determine the membership functions of the fuzzy propositions in the conclusions?
- ► The Compositional Rule of Inference
 - It is a generalization of the following procedure
 - For a curve y = f(x) from $x \in U$ to $y \in V$
 - \blacktriangleright x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - ► First find a cylindrical set a_E with base a
 - ▶ find *I*: intersection of *A*_E with the interval-valued curve.
 - ▶ The interval b: project I on V



- ► How do we determine the membership functions of the fuzzy propositions in the conclusions?
- ► The Compositional Rule of Inference
 - It is a generalization of the following procedure
 - ▶ For a curve y = f(x) from $x \in U$ to $y \in V$
 - \blacktriangleright x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - ► First find a cylindrical set a_E with base a
 - ▶ find *I*: intersection of *A*_E with the interval-valued curve.
 - ► The interval *b*: project *I* on *V*



- ► How do we determine the membership functions of the fuzzy propositions in the conclusions?
- ► The Compositional Rule of Inference
 - ► It is a generalization of the following procedure
 - ▶ For a curve y = f(x) from $x \in U$ to $y \in V$
 - \blacktriangleright x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - ► First find a cylindrical set a_E with base a
 - ▶ find *I*: intersection of *A*_E with the interval-valued curve.
 - ► The interval *b*: project *I* on *V*



Compositional Rule of Inference.

- ▶ Assume the A' is a fuzzy set in U and Q is a fuzzy relation in $U \times V$.
- ▶ Then A'_E is cylindrical extension of A': $\mu_{A'_E}(x,y) = \mu_{A'}(x)$
- $\blacktriangleright \ I = A'_E \cap Q \leadsto \mu_I = t\{\mu_{A'_E}(x,y), \mu_Q(x,y)\} = t\{\mu_{A'}(x), \mu_Q(x,y)\}$
- ▶ B' proj. of I on $V: \mu_{B'}(y) = \sup_{x \in U} t\{\mu_{A'}(x), \mu_{Q}(x, y)\}$
- It is compositional rule of inference.
- ► Generalized Modus Ponens:
 - ► Fuzzy set A': premise x is A'; fuzzy relation $A \to B \in U \times V$: premise IF x is A THEN y is B; fuzzy set $B' \in V$: conclusion y is B' $\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{A \to B}(x, y)]$
- ► Generalized Modus Tollens:
 - ► Fuzzy set B':premise y is B'; fuzzy relation $A \to B \in U \times V$: premise IF x is A THEN y is B; fuzzy set $A' \in U$: conclusion x is A' $\mu_{A'}(x) = \sup_{y \in V} t[\mu_{B'}(y), \mu_{A \to B}(x, y)]$

Farzaneh Abdollahi Computational Intelligence Lecture 13

- Generalized Hypothetical Syllogisini
 - ▶ Fuzzy relation $A \rightarrow B \in U \times V$: premise IF x is A THEN y is B; Fuzzy relation $B' \to C \in V \times W$: premise IF v is B' THEN z is C; Fuzzy relation $A \rightarrow C' \in U \times W$: conclusion IF x is A THEN z is C'; $\mu_{A \to C'}(x, z) = \sup_{y \in V} t[\mu_{A \to B}(x, y), \mu_{B' \to C}(y, z)]$
- \triangleright Diff. implication principles, definitions of B', A', C' and diff t-norms vields diff. results
- Generalized Modus Ponens:
 - 1. t-norm: min; Mamdani product imp.
 - 1.1 $A' = A \leadsto \mu_{B'}(y) = \sup_{x \in U} [\mu_A(x)\mu_B(y)] = \mu_B(y)$
 - 1.2 $A' = \text{very } A \leadsto \mu_{B'} = \sup_{x \in U} \{ \min[\mu_A^2(x), \mu_A(x)\mu_B(y)] \}$ $\sup_{x \in U} \{\mu_A(x)\} = 1$ and x can take any values in U, for any $v \in V, \exists x \in U \text{ s.t.}$

$$\mu_A(x) \ge \mu_B(y) \longrightarrow \mu_{B'}(y) = \sup_{x \in U} [\mu_A(x)\mu_B(y)] = \mu_B(y)$$

- 1.3 A' is more or less A
 - $\longrightarrow \mu_A^{1/2}(x) > \mu_A(x) \ge \mu_A(x)\mu_B(x) \longrightarrow \mu_{B'}(y) = \mu_B(y)$
- 1.4 $A' = \overline{A}$ for fixed $y \in V$, $\mu_A(x) \uparrow \rightsquigarrow \mu_A(x) \mu_B(y) \uparrow .1 \mu_A(x) \downarrow$, $\sup_{x \in \mathcal{U}} \min$ is obtained when

$$1 - \mu_A(x) = \mu_A(x)\mu_B(y) \longrightarrow \mu_{B'}(y) = \frac{\mu_B(y)}{1 + \mu_B(y)}$$

- ► Fuzzy relation $A \to B \in U \times V$: premise IF x is A THEN y is B; Fuzzy relation $B' \to C \in V \times W$: premise IF y is B' THEN z is C; Fuzzy relation $A \to C' \in U \times W$: conclusion IF x is A THEN z is C'; $\mu_{A \to C'}(x, z) = \sup_{v \in V} t[\mu_{A \to B}(x, y), \mu_{B' \to C}(y, z)]$
- ▶ Diff. implication principles, definitions of B', A', C' and diff t-norms yields diff. results
- ► Generalized Modus Ponens:
 - 1. t-norm: min; Mamdani product imp.
 - 1.1 $A' = A \leadsto \mu_{B'}(y) = \sup_{x \in U} [\mu_A(x)\mu_B(y)] = \mu_B(y)$
 - 1.2 $A' = \text{very } A \hookrightarrow \mu_{B'} = \sup_{x \in U} \{ \min[\mu_A^2(x), \mu_A(x)\mu_B(y)] \}$ $\sup_{x \in U} \{ \mu_A(x) \} = 1 \text{ and } x \text{ can take any values in } U, \text{ for any } y \in V, \exists x \in U \text{ s.t.}$

$$\mu_A(x) \ge \mu_B(y) \longrightarrow \mu_{B'}(y) = \sup_{x \in U} [\mu_A(x)\mu_B(y)] = \mu_B(y)$$

- 1.3 A' is more or less A
 - $\mu_A^{1/2}(x) \ge \mu_A(x) \ge \mu_A(x) \mu_B(x) \longrightarrow \mu_{B'}(y) = \mu_B(y)$
- 1.4 $A' = \overline{A}$ for fixed $y \in V$, $\mu_A(x) \uparrow \leadsto \mu_A(x) \mu_B(y) \uparrow .1 \mu_A(x) \downarrow$, $\sup_{x \in U} \min$ is obtained when

$$1 - \mu_A(x) = \mu_A(x)\mu_B(y) \rightsquigarrow \mu_{B'}(y) = \frac{\mu_B(y)}{1 + \mu_B(y)}$$

Generalized Modus Ponens

- 2 t-norm: min; Zadeh imp., Assume $\sup_{x \in U} [\mu_A(x)] = 1$
 - 2.1 $A' = A \mu_{B'}(y) = \sup_{x \in U} \min\{\mu_A(x), \max[\min(\mu_A(x), \mu_B(y)), 1 \mu_A(x)]\}$
 - ▶ $\sup_{x \in U} [\mu_A(x)] = 1$ $\leadsto \sup_{x \in U} \min$ is achieved at $x_0 \in U$ when $\mu_A(x_0) = \max[\min(\mu_A(x_0), \mu_B(y)), 1 \mu_A(x_0)]$
 - ▶ If $\mu_A(x_0) < \mu_B(y) \rightsquigarrow \mu_A(x_0) = \max[\mu_A(x_0), 1 \mu_A(x_0)]$, it is true when $\mu_A(x_0) \ge 0.5$, since $\sup_{x \in U} [\mu_A(x)] = 1 \rightsquigarrow \mu_B(y) > \mu_A(x_0) = 1$ impossible!
 - ▶ $\mu_A(x_0) \ge \mu_B(y) \leadsto \mu_A(x_0) = \max[\mu_B(y), 1 \mu_A(x_0)], \text{ If }$ $\mu_B(y) < 1 - \mu_A(x_0) \leadsto \mu_A(x_0) = 1 - \mu_A(x_0) \leadsto \mu_A(x_0) = 0.5; \text{ If }$ $\mu_B(y) \ge 1 - \mu_A(x_0) \leadsto \mu_A(x_0) = \max[0.5, \mu_B(y)]$
 - $...\mu_{B'}(y) = \mu_A(x_0) = \max[0.5, \mu_B(y)]$

Generalized Modus Ponens

- 2 t-norm: min; Zadeh imp., Assume $\sup_{x \in U} [\mu_A(x)] = 1$
 - 2.2 A' = very A

$$\mu_{B'}(y) = \sup_{x \in U} \min\{\mu_A^2(x), \max[\min(\mu_A(x), \mu_B(y)), 1 - \mu_A(x)]\}$$

- ▶ $\sup_{x \in U} [\mu_A(x)] = 1$ $\longrightarrow \sup_{x \in U} \min$ is achieved at $x_0 \in U$ when $\mu_A^2(x_0) = \max[\min(\mu_A(x_0), \mu_B(y)), 1 \mu_A(x_0)]$
- If $\mu_A(x_0) < \mu_B(y) \rightsquigarrow \mu_A^2(x_0) = \max[\mu_A(x_0), 1 \mu_A(x_0)]$, it is true when $\mu_A(x_0) = 1, \rightsquigarrow \mu_B(y) > 1$ impossible!
- $\mu_{A}(x_{0}) \geq \mu_{B}(y) \rightsquigarrow \mu_{A}^{2}(x_{0}) = \max[\mu_{B}(y), 1 \mu_{A}(x_{0})], \text{ If }$ $\mu_{B}(y) < 1 \mu_{A}(x_{0}) \rightsquigarrow \mu_{A}^{2}(x_{0}) = 1 \mu_{A}(x_{0}) \rightsquigarrow \mu_{A}(x_{0}) = \frac{\sqrt{5}-1}{2}, \mu_{B'}(y) =$ $\mu_{A}^{2}(x_{0}) = \frac{3-\sqrt{5}}{2}; \text{ If } \mu_{B}(y) \geq 1 \mu_{A}(x_{0}) \rightsquigarrow \mu_{B'}(y) = \mu_{A}^{2}(x_{0}) = \mu_{B}(y) \geq \frac{3-\sqrt{5}}{2}$
- $\mu_{B'}(y) = \mu_A^2(x_0) = \max[\frac{3-\sqrt{5}}{2}, \mu_B(y)]$

Generalized Modus Ponens

- 2 t-norm: min; Zadeh imp., Assume $\sup_{x \in U} [\mu_A(x)] = 1$
 - 2.3 A' = more or less A

$$\mu_{B'}(y) = \sup_{x \in U} \min\{\mu_A^{1/2}(x), \max[\min(\mu_A(x), \mu_B(y)), 1 - \mu_A(x)]\}$$

- ▶ $\sup_{x \in U} [\mu_A(x)] = 1 \longrightarrow \sup_{x \in U} \min$ is achieved at $x_0 \in U$ when $\mu_A^{1/2}(x_0) = \max[\min(\mu_A(x_0), \mu_B(y)), 1 - \mu_A(x_0)]$
- similar to the previous case If $\mu_A(x_0) < \mu_B(y)$ is impossible!

$$\mu_{A}(x_{0}) \geq \mu_{B}(y) \leadsto \mu_{A}^{1/2}(x_{0}) = \max[\mu_{B}(y), 1 - \mu_{A}(x_{0})],$$
If $\mu_{B}(y) < 1 - \mu_{A}(x_{0}) \leadsto \mu_{A}^{1/2}(x_{0}) = 1 - \mu_{A}(x_{0}) \leadsto \mu_{A}(x_{0}) = \frac{3 - \sqrt{5}}{2}, \mu_{B'}(y) = \mu_{A}^{1/2}(x_{0}) = \frac{\sqrt{5} - 1}{2};$
If $\mu_{B}(y) \geq 1 - \mu_{A}(x_{0}) \leadsto \mu_{B'}(y) = \mu_{A}^{1/2}(x_{0}) = \mu_{B}(y) \geq \frac{\sqrt{5} - 1}{2}$

If
$$\mu_B(y) \ge 1 - \mu_A(x_0) \rightsquigarrow \mu_{B'}(y) = \mu_A^{1/2}(x_0) = \mu_B(y) \ge \frac{\sqrt{3}}{2}$$

- $\mu_{B'}(y) = \mu_A^{1/2}(x_0) = \max[\frac{\sqrt{5}-1}{2}, \mu_B(y)]$
- $2.4 A' = \bar{A}$

$$\mu_{B'}(y) = \sup_{x \in U} \min\{1 - \mu_A(x), \max[\min(\mu_A(x), \mu_B(y)), 1 - \mu_A(x)]\}$$

- $\mu_A(x_0) = 0 \rightarrow 1 \mu_A(x_0) = 1$ and $\max[\min(\mu_A(x), \mu_B(y)), 1 \mu_A(x)] = 1$
- $\blacktriangleright : \mu_{B'}(y) = 1$

口 医水利氏 医医医水管医

Generalized Modus Tollens

1. t-norm: min; Mamdani product imp.

1.1
$$B' = \bar{B} \leadsto \mu_{A'}(x) = \sup_{y \in V} [1 - \mu_B(y), \mu_A(x)\mu_B(y)]$$

• $\sup_{y \in V} \min \text{ is at } y_0 \in V \text{ s.t.}$

$$1 - \mu_B(y_0) = \mu_A(x)\mu_B(y_0) \rightsquigarrow \mu_B(y_0) = \frac{1}{1 + \mu_A(x)}$$

•
$$\mu_{A'}(x) = 1 - \mu_B(y_0) = \frac{\mu_A(x)}{1 + \mu_A(x)}$$

- 1.2 $B' = \text{is not very } B \leadsto \mu_{A'}(x) = \sup_{y \in V} \{ \min[1 \mu_B^2(y), \mu_A(x)\mu_B(y)] \}$
 - ▶ $\sup_{y \in V} \min \text{ is at } y_0 \in V \text{ s.t.}$

$$1 - \mu_B^2(y_0) = \mu_A(x)\mu_B(y_0) \longrightarrow \mu_B(y_0) = \frac{\sqrt{\mu_A^2(x) + 4 - \mu_A(x)}}{2}$$

•
$$\therefore \mu_{A'}(x) = 1 - \mu_B(y_0)\mu_A(x) = \frac{\mu_A(x)\sqrt{\mu_A^2(x)+4-\mu_A^2(x)}}{2}$$

1.3 B' is more or less B

$$\rightsquigarrow \mu_{A'}(x) = \sup_{y \in V} \{ \min[1 - \mu_B^{1/2}(y), \mu_A(x)\mu_B(y)] \}$$

• $\sup_{v \in V} \min \text{ is at } y_0 \in V \text{ s.t.}$

$$1 - \mu_B^{1/2}(y_0) = \mu_A(x)\mu_B(y_0) \rightarrow \mu_B(y_0) = \frac{1 + 2\mu_A(x) - \sqrt{\mu_A^2(x) + 1}}{2\mu_A^2(x)}$$

•
$$\therefore \mu_{A'}(x) = \mu_A(x)\mu_B(y_0) = \frac{1+2\mu_A(x)-\sqrt{\mu_A^2(x)+1}}{2\mu_A(x)}$$

Generalized Modus Tollens

1. t-norm: min; Mamdani product imp.

1.4
$$B' = B \leadsto \mu_{A'}(x) = \sup_{y \in V} \{\min[\mu_B(y), \mu_A(x)\mu_B(y)]\} = \sup_{y \in V} \mu_B(y)\mu_A(x) = \mu_A(x)$$

- $... \mu_{A'}(x) = \mu_A(x)$
- ▶ t1 is satisfied : y is $B \rightsquigarrow x$ is A

16/17

Generalized Hypothetical Syllogism

- 1. t-norm: min; Mamdani product imp.
 - 1.1 $B' = B \leadsto \mu_{A \to C'}(x, z) = \sup_{y \in V} \{ \min[\mu_A(x)\mu_B(y), \mu_B(y)\mu_C(z)] \} = (\sup_{y \in V} \mu_B(y)) \min[\mu_A(x), \mu_C(z)]$
 - $\blacktriangleright \sup_{y \in V} [\mu_B(y)] = 1 \longrightarrow \mu_{A \to C'}(x, z) = \min[\mu_A(x), \mu_C(z)]$
 - 1.2 $B' = \text{very } B \leadsto \mu_{A \to C'}(x, z) = \sup_{y \in V} \{ \min[\mu_A(x)\mu_B(y), \mu_B^2(y)\mu_C(z)] \}$
 - If $\mu_A(x) > \mu_C(z) \rightsquigarrow \mu_A(x) \mu_B(y) > \mu_B^2(y) \mu_C(z)$

 - ► If $\mu_A(x) \le \mu_C(z)$ sup_{$y \in V$} min is at $y_0 \in V$, $\mu_A(x)\mu_B(y_0) = \mu_B^2(y_0)\mu_C(z)$
 - $...\mu_B(y_0) = \frac{\mu_A(x)}{\mu_C(z)} \longrightarrow \mu_{A \to C'}(x, z) = \mu_A(x)\mu_B(y_0) = \frac{\mu_A^2(x)}{\mu_C(z)}$

Generalized Hypothetical Syllogism

- 1. t-norm: min; Mamdani product imp.
 - 1.3 B' = more or less B

$$\rightsquigarrow \mu_{A \to C'}(x, z) = \sup_{y \in V} \{ \min[\mu_A(x)\mu_B(y), \mu_B^{1/2}(y)\mu_C(z)] \}$$

▶ Using similar method to B' =very B

- 1.4 $B' = \bar{B} \leadsto \mu_{A \to C'}(x, z) = \sup_{y \in V} \{ \min[\mu_A(x)\mu_B(y), (1 \mu_B(y))\mu_C(z)] \}$
 - $\sup_{y \in V} \min$ is achieved at $\mu_B(y_0) = \frac{\mu_C(z)}{\mu_A(x) + \mu_C(z)}$
 - $\blacktriangleright \therefore \mu_{A \to C'}(x, z) = \frac{\mu_A(x)\mu_C(z)}{\mu_A(x) + \mu_C(z)}$

