Computational Intelligence Lecture 11:Fuzzy Relations

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

Classical Relation

Fuzzy Relation

Projection
Cylindrical Extension
Cartesian Product of Fuzzy Sets
Composition

Extension Principle

- $U_{i} t=1, \ldots, n: n$ arbitrary classical sets.
- $U_{1} \times U_{2} \times \ldots \times U_{n}$ is the set of all ordered n-tuples $\left(u_{1}, \ldots, u_{n}\right)$:

$$
U_{1} \times U_{2} \times \ldots \times U_{n}=\left\{\left(u_{1}, u_{2}, \ldots, u_{n}\right) \mid u_{1} \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}\right\}
$$

- For binary relation $(n=2): U_{1} \times U_{2}=\left\{\left(u_{1}, u_{2}\right) \mid u_{1} \in U_{1}, u_{2} \in U_{2}\right\}$
- $U_{1} \neq U_{2} \rightsquigarrow U_{1} \times U_{2} \neq U_{2} \times U_{1}$.
- A relation among sets $U_{1}, U_{2}, \ldots, U_{n}\left(Q\left(U_{1}, U_{2}, \ldots, U_{n}\right)\right)$:
- a subset of the Cartesian product $U_{1} \times U_{2} \times \ldots \times U_{n}$:

$$
Q\left(U_{1}, U_{2}, \ldots, U_{n}\right) \subset U_{1} \times U_{2} \times \ldots \times U_{n}
$$

- a relation is itself a set \rightsquigarrow, all of the basic set operations can be applied to it without modification.
- It can be represented by membership function:

$$
\mu_{Q}\left(u_{1}, \ldots, u_{n}\right)=\left\{\begin{array}{cc}
1 & \text { if }\left(u_{1}, \ldots, u_{n}\right) \in Q\left(U_{1}, U_{2}, \ldots, U_{n}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

- The values of the membership function μ_{Q} can be shown by a relational matrix.

Example:

- $U=\{1,2,3\}, V=\{a, b\}$
- $U \times V=(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$
- Let $Q(U, V)$ be a relation named "the first element is not smaller than 2"
- $Q(U, V)=\{(2, a),(2, b),(3, a),(3, b)\}$

$U \backslash V$	a	b
1	0	0
2	1	1
3	1	1

Fuzzy Relation

- A classical relation represents a crisp (zero-one) relationship among sets.
- But, for certain relationships, it is difficult to express the relation by a zero-one assessment
- In fuzzy relation the degree the strength of the relation is defined by different membership on the unit interval $[0,1]$.
- A fuzzy relation is a fuzzy set defined in the Cartesian product of crisp sets $U_{1}, U_{2}, \ldots, U_{n}$.
$Q=\left\{\left(\left(u_{1}, u_{2}, \ldots, u_{n}\right), \mu_{Q}\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right) \mid\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in\right.$ $\left.U_{1} \times U_{2} \times \ldots, \times U_{n}\right\}, \quad \mu_{Q}: U_{1} \times U_{2} \times \ldots, \times U_{n} \rightarrow[0,1]$
- Example:Fuzzy relation: " x is approximately equal to y " (AE).
- $U=V=R$,
- $\mu_{A E}(x, y)=e^{-(x-y)^{2}}$
- This membership function is not unique

Example: Dormitory based on Distance of cities.

- $V=\{$ Tehran, Tabriz, Karaj, Qom $\}, U=\{$ Tehran, Esfahan $\}$
- Relation: "very far"
- use number between 0 and 1 for degree of relation

U / V	Tehran	Tabriz	Karaj	Qom
Tehran	0	0.9	0.1	0.3
Esfahan	0.7	0.95	0.8	0.5

Projection

Projection

- Example: A crisp relation in $V \times U=R^{2}$
- $A=\left\{(x, y) \in R^{2} \mid(x-1)^{2}+(y-1)^{2} \leq 1\right\}$
- A_{1} the projection of A on $U:[0,2] \subset U$
- A_{2} the projection of A on $V:[0,2] \subset V$

Projection of Fuzzy Sets

- Q: a fuzzy relation in $U_{1} \times \ldots \times U_{n}$
- $\left\{i_{1}, \ldots, i_{k}\right\}$ a subsequence of $\{1,2, \ldots, n\}$
- The projection of Q on $U_{i_{1}} \times \ldots \times U_{i_{k}}$ is a fuzzy relation Q_{P} in $U_{i_{1}} \times \ldots \times U_{i_{k}}$ s.t.:
$\mu_{Q_{p}}\left(u_{i_{1}}, \ldots, u_{i_{k}}\right)=\underline{\max }_{u_{j_{1}} \in U_{j_{1}}, \ldots, u_{j(n-k)} \in U_{j(n-k)}} \mu_{Q}\left(u_{1}, \ldots, u_{n}\right)$
- $\left\{u_{j_{1}}, \ldots, u_{j(n-k)}\right\}$ is the complement of $\left\{u_{i_{1}}, \ldots, u_{i_{k}}\right\}$
- For binary fuzzy relation $U \times V$:
- Q_{1} projection in $U: \mu_{Q_{1}}(x)=\max _{y \in V} \mu_{Q}(x, y)$
- Example: Recall the "AE" example
- Projection in $U: A E_{1}=\int_{U} \max _{y \in V} e^{-(x-y)^{2}} / x=\int_{U} 1 / x$
- Projection in $V: A E_{2}=\int_{V} \max _{x \in U} e^{-(x-y)^{2}} / y=\int_{V} 1 / y$
- Example: Recall the "very far" example
- Q_{1} : projection on $u: Q_{1}=0.9 /$ Tehran $+0.95 /$ Esfahan
- Q_{2} : projection on V :

Cylindrical Extension

- Extending the projection of fuzzy cylindrically.
- Example: Recall the circle example
- $A_{1 E}$ Cylindric extention of A_{1} to

$$
\begin{aligned}
& U \times V=R^{2} \\
- & A_{1 E}=[0,1] \times(-\infty, \infty) \subset R^{2}
\end{aligned}
$$

- The projection constrains a fuzzy relation to a subspace
- The cylindric extension extends a fuzzy relation (or fuzzy set) from a subspace to the whole space.

- Let Q_{p} be a fuzzy relation in $U_{i_{1}} \times \ldots \times U_{i_{k}}$ and $\left\{i_{1}, \ldots, i_{k}\right\}$ is a subsequence of $\{1,2, \ldots, n\}$, then the cylindric extension of Q_{p} to $U_{I} \times \ldots \times U_{n}$ is a fuzzy relation $Q_{p E}$ in $U_{I} \times \ldots \times U_{n}$ $\mu_{Q_{p E}}\left(u_{1}, \ldots, u_{n}\right)=\mu_{Q_{p}}\left(u_{i_{1}}, \ldots, u_{i_{k}}\right)$
- For binary set:
- $U \times V$,
- Q_{1} a fuzzy set in U
- $Q_{1 E}$ the cylindric extension to $U \times V$
- $\mu_{Q_{1 E}}(x, y)=\mu_{Q_{1}}(x)$
- Example: Recall the "AE" example
- $A_{E_{1 E}}=\int_{U \times V} 1 /(x, y)=U \times V$
- $A_{E_{2 E}}=\int_{U \times V} 1 /(x, y)=U \times V$
- Example: Recall the "very far" example
- $Q_{1 E}$: cylindrical ext. of Q_{1} to $U \times V$: $Q_{1 E}=$ 0.9/(Tehran, Tehran) +0.9 (Tabriz, Tehran $)+0.9 /($ Karaj, Tehran $)+$ 0.9/(Qom, Tehran) + 0.95/(Tehran, Esfahan), 0.95/(Tabriz, Esfahan) + 0.95/(Karaj, Esfahan) $+0.95 /($ Qom, Esfahan $)$
- $Q_{1 E}$: cylindrical ext. of Q_{2} to $U \times V$:
$Q_{2 E}=$
0.7/(Tehran, Tehran) $+0.7($ Tehran, Esfahn $)+0.95 /($ Tabriz, Tehran $)+$ 0.95/(Tabriz, Esfahan) + 0.8/(Karaj, Tehran), 0.8/(Karaj, Esfahan) + 0.5/(Qom, Tehran) + 0.5/(Qom, Esfahan)

Cartesian Product of Fuzzy Sets

- Let A_{1}, \ldots, A_{n} be fuzzy sets in U_{l}, \ldots, U_{n}, respectively. The Cartesian product of A_{1}, \ldots, A_{n} denoted by $A_{l} \times \ldots \times A_{n}$, is a fuzzy relation in $U_{I} \times \ldots \times U_{n}$:
$\mu_{A_{1} \times \ldots \times A_{n}}\left(u_{1}, \ldots, u_{n}\right)=$ $\mu_{A_{1}}\left(u_{1}\right) * \ldots * \mu_{A_{n}}\left(u_{n}\right)$
- where $*$ represents any t-norm operator.
- Lemma: If Q is a fuzzy relation in $U_{l} \times \ldots \times U_{n}$ and Q_{l}, \ldots, Q_{n} are its projections on U_{l}, \ldots, U_{n}, respectively, then

$$
Q \subset Q_{1} \times \ldots \times Q_{n}
$$

where we use " min" for the t-norm

Cartesian Product of Fuzzy Sets

- Let A_{1}, \ldots, A_{n} be fuzzy sets in U_{l}, \ldots, U_{n}, respectively. The Cartesian product of A_{1}, \ldots, A_{n} denoted by $A_{l} \times \ldots \times A_{n}$, is a fuzzy relation in $U_{I} \times \ldots \times U_{n}$:
$\mu_{A_{1} \times \ldots \times A_{n}}\left(u_{1}, \ldots, u_{n}\right)=$ $\mu_{A_{1}}\left(u_{1}\right) * \ldots * \mu_{A_{n}}\left(u_{n}\right)$
- where $*$ represents any t-norm operator.
- Lemma: If Q is a fuzzy relation in $U_{l} \times \ldots \times U_{n}$ and Q_{l}, \ldots, Q_{n} are its projections on U_{l}, \ldots, U_{n}, respectively,
 then

$$
Q \subset Q_{1} \times \ldots \times Q_{n}
$$

where we use " min" for the t-norm

Composition

- $P(U, V)$ and $Q(V, W)$: two crisp binary relations that share a common set V.
- The composition of P and $Q,(P o Q)$, is a relation in $U \times W$ s.t. $(x, z) \in Q$ iff there exists at least one $y \in V$ s.t. $(x, y) \in P$ and $(y, z) \in Q$.

- Lemma: $P o Q$ is the composition of $P(U, V)$ and $Q(V, W)$ iff
$\mu_{P_{O} Q}(x, z)=\max t\left[\mu_{P}(x, y), \mu_{Q}(y, z)\right]$
for any $(x, z) \in U \times W$, where t is any t-norm.

- Proof:

- If $P o Q$ is the composition:
- $(x, z) \in P o Q \rightsquigarrow \exists y \in V$ s.t. $\mu_{P}(x, y)=1 \& \mu_{Q}(y, z)=1$
- $\therefore \mu_{P o Q}(x, z)=1=\max _{y \in V} t\left[\mu_{P}(x, y), \mu_{Q}(y, z)\right]$
- If $(x, z) \notin P o Q \rightsquigarrow$ for any $y \in V, \mu_{P}(x, y)=0$ or $\mu_{Q}(y, z)=0$
$\therefore \therefore \mu_{P O Q}(x, z)=0=\max _{y \in v} t\left[\mu_{P}(x, y), \mu_{Q}(y, z)\right]$.
- Eq. (1) is true.
- Conversely, if the Eq. (1) is true:
- $(x, z) \in P_{o} Q \rightsquigarrow \max _{y \in V} t\left[\mu_{P}(x, y), \mu_{Q}(y, z)\right]=1$
- \therefore there exists at least one $y \in V$ s.t. $\mu_{P}(x, y)=\mu_{Q}(Y, z)=1$ (Axiom t1)
- For $(x, z) \notin P o Q \rightsquigarrow \max _{y \in v}\left[\mu_{P}(x, y), \mu_{Q}(y, z)\right]=0$
- $\therefore \nexists y \in V$ s.t. $\mu_{P}(x, y)=\mu_{Q}(y, z)=1$.
- $\therefore P o Q$ is the composition

Fuzzy Composition

- Composition for fuzzy relations is defined similar to crisp relations
- Based on different definition of t-norm different composition is obtained.
- The two most popular compositions:
- Max-Min: of fuzzy relations $P(U, V)$ and $Q(V, W)$ is a fuzzy relation $P o Q$ in $U \times W$ s.t. $\mu_{P o Q}(x, z)=\max _{y \in V} \min \left[\mu_{P}(x, y), \mu_{Q}(y, z)\right]$
- It uses the min for t-norm where $(x, z) \in U \times W$.
- Max-Product: of fuzzy relations $P(U, V)$ and $Q(V, W)$ is a fuzzy relation $P o Q$ in $U \times W$ s.t. $\mu_{P o Q}(x, z)=\max _{y \in V}\left[\mu_{P}(x, y) \cdot \mu_{Q}(y, z)\right]$ where $(x, z) \in U \times W$.
- It uses algebraic product for t-norm

Example: Recall Dormitory example

- $V=\{$ Tehran, Tabriz, Karaj, Qom $\}, U=\{$ Tehran, Esfahan $\}, W=$ \{Boomehen, Kashan, Ardebil\}
- $P(U, V)$ "very far"" | U / V | Tehran | Tabriz | Karaj | Qom |
| :---: | :---: | :---: | :---: | :---: |
| Tehran | 0 | 0.9 | 0.1 | 0.3 |
| Esfahan | 0.7 | 0.95 | 0.8 | 0.5 |

Example: Recall Dormitory example

- $V=\{$ Tehran, Tabriz, Karaj, Qom $\}, U=\{$ Tehran, Esfahan $\}, W=$ \{Boomehen, Kashan, Ardebil\}

U / V	Tehran	Tabriz	Karaj	Qom
Tehran	0	0.9	0.1	0.3
Esfahan	0.7	0.95	0.8	0.5

- $P(U, V)$ "very far"
- $Q(V, W)$:" very near"

V / W	Boomehen	Kashan	Ardebil
Tehran	1	0.4	0.1
Tabriz	0.2	0	0.8
Karaj	0.6	0.3	0.1
Qom	0.7	0.95	0

- $\operatorname{PoQ}(U, W)$ using Max-min

P					Q			
U/V	Tehran	Tabriz	Karaj	Qom	$V \backslash$	Boomehen	Kashan	Ardebil
Tehran	0	0.9	0.1	0.3	Tehran	1	0.4	0.1
Esfahan	0.7	0.95	0.8	0.5	Tabriz	0.2	0	0.8
					Karaj	0.6	0.3	0.1
					Qom	0.7	0.95	0

Min

0	0.9	0.1	0.3
1	0.2	0.6	0.7
0	0.2	0.1	0.3

Max	PoQ		
U / W	Boomehen	Kashan	Ardebil
Tehran	0.3	0.3	0.8
Esfahan	0.7	0.5	0.8

- PoQ (U, W) using Max-Product

P					Q			
U/V	Tehran	Tabriz	Karaj	Qom	$V \backslash$	Boomehen	Kashan	Ardebil
Tehran	0	0.9	0.1	0.3	Tehran	1	0.4	0.1
Esfahan	0.7	0.95	0.8	0.5	Tabriz	0.2	0	0.8
					Karaj	0.6	0.3	0.1
					Qom	0.7	0.95	0

$\times \quad$| $\mathbf{0}$ | $\mathbf{0 . 9}$ | $\mathbf{0 . 1}$ | $\mathbf{0 . 3}$ | |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 6}$ | $\mathbf{0 . 7}$ | |
| $\mathbf{0}$ | $\mathbf{0 . 1 8}$ | $\mathbf{0 . 0 6}$ | $\mathbf{0 . 2 1}$ | |
| | | | | |
| Max | | | | |
| | $\mathbf{~ P o Q ~}$ | | | |
| U / W | Boomehen | Kashan | Ardebil | |
| Tehran | 0.21 | 0.0 .285 | 0.72 | |
| Esfahan | 0.7 | 0.475 | 0.76 | |

- The relational matrix for the fuzzy composition $P o Q$ can be computed according to the following method:
- For max-min composition
- write out each element in the matrix product $P Q$, But treat:
- each multiplication as a min operation
- each addition as a max operation
- For max-product composition,
- write out each element in the matrix product $P Q$, but treat
- each addition as a max operation.

Extension Principle

- Objective: the domain of a function be extended from crisp points in U to fuzzy sets in U
- $f: U \rightarrow V$ a function from crisp set U to crisp set V.
- A: a fuzzy set U
- $B=f(A)$ a fuzzy set in V
- If f is an one-to-one mapping

$$
\mu_{B}(y)=\mu_{A}\left[f^{-1}(y)\right], y \in V
$$

- where $f\left[f^{-1}(y)\right]=y$
- If f is not one-by-one what should we do ?:(
- Example: $f\left(x_{1}\right)=f\left(x_{2}\right)=y, x_{1} \neq x_{2} \rightsquigarrow \mu_{A}\left(x_{1}\right) \neq \mu_{A}\left(x_{2}\right)$
- Two different values is obtained for $\mu_{B}(y)$

Extension Principle

- Extension Principle: $\mu_{B}(y)=\max _{x \in f^{-1}(y)} \mu_{A}(x), y \in V$
- $f^{-1}(y)$: set of all points $x \in U$ s.t. $f(x)=y$
- Example $U=\{1, \ldots, 10\}, x \in U, f(x)=x^{2} \in V=\{1, \ldots, 100\}$
- Fuzzy set: " small" $=1 / 1+1 / 2+0.8 / 3+0.6 / 4+0.4 / 5$
- \therefore "small ${ }^{2}=1 / 1+1 / 4+0.8 / 9+0.6 / 16+0.4 / 25$

