

Computational Intelligence Lecture 11: Fuzzy Control III

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

Farzane	hΑ	bdo	llahi

通 ト イヨ ト イヨト

Adaptive Fuzzy Control Control Indirect Adaptive Fuzzy Control Direct Adaptive Fuzzy Control

э

프 문 문 프 문

- T

Adaptive Fuzzy Control

- The objective of adaptive control: Providing desired performance in presence of uncertainties.
- The main advantage of adaptive fuzzy control comparing to classical adaptive control:
 - ► To obtain control adaptive law, the knowledge of experts on system dynamics and/or control strategies can be considered.
- Expert knowledge can be categorized to
 - System knowledge: The If-then rules which describe the unknown system behavior.
 - For example: For a car:"IF you push the gas pedal more, Then the car speed is increased.
 - Control knowledge: the rule of fuzzy control which indicates at each situation, which control action is required.
 - ► For example: For a car:"IF the speed is low, Then push the gas pedal more.

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

- Based on the applied type of expert knowledge, the adaptive fuzzy control can be
 - Indirect adaptive fuzzy control: The fuzzy control includes some fuzzy systems made based on system knowledge
 - Direct adaptive fuzzy control: The control fuzzy includes a fuzzy system which is made based on control knowledge
 - Combination of indirect/direct adaptive fuzzy control: A weighted combination of direct and indirect adaptive control

Indirect Adaptive Fuzzy Control

Consider *n*th order nonlinear system

$$\begin{aligned} x^{(n)} &= f(x, \dot{x}, \dots, x^{(n-1)}) + g(x, \dot{x}, \dots, x^{(n-1)}) u \\ y &= x \end{aligned}$$

where $X = (x, \dot{x}, \dots, x^{(n-1)})$: state vector; $u \in R$: input; $y \in R$: Output; f, g: unknown functions

- Assume the system is controllable
- Objective: find u = u(X|θ) based on fuzzy rules and an adaptation law for adjusting θ s.t. y tracks y_m

The Fuzzy Control Design for Indirect Adaptive Control

Assume a set of IF-then laws based on system knowledge is available to describe the I/O behavior of g and f

If
$$x_1$$
 is F_1^r, \ldots, x_n is F_n^r , then $f(x)$ is C^r (1)
If x_1 is G_1^s, \ldots, x_n is G_n^s , then $g(x)$ is D^r

$$r=1,2,\ldots,L_f$$
 $s=1,2,\ldots,L_g$

▶ If the *f* and *g* functions are known, *u* is selected s.t. cancel the nonlinearities and control based on linear control techniques such as pole-placement:

$$u^* = \frac{1}{g(x)} [-f(x) + y_m^{(n)} + K^T e]$$
⁽²⁾

where $e = y_m - y$ is dynamics error, $K = (k_1, \ldots, k_n)^T$, s.t. the roots of $s^n + k_1 s^{n-1} + \ldots + k_n$ are LHP

Since f and g are unknown, the estimation of them are considered in (3):

$$u^{*} = \frac{1}{\hat{g}(X|\theta_{g})} \left[-\hat{f}(X|\theta_{f}) + y_{m}^{(n)} + \mathcal{K}^{T} \mathbf{e} \right] \tag{3}$$

- $\hat{g}(X|\theta_g)$ and $\hat{f}(X|\theta_f)$ are obtained in the following two steps
 - 1. for x_i , i = 1, ..., n, define p_i fuzzy set of $A_i^{l_i}, l_i = 1, ..., p_i$, s.t. they include F_i^r , $r = 1, ..., L_f$ in(1); also define q_i fuzzy set of $B_i^{l_i}, l_i = 1, ..., q_i$, s.t. they include G_i^s , $s = 1, ..., L_g$ in(1)
 - 2. Using the fuzzy rule $\prod_{i=1}^{n} p_i$ provide a fuzzy system for $\hat{f}(X|\theta_f)$:

If
$$x_1$$
 is $A_1^{l_1}, \ldots, x_n$ is $A_n^{l_n}$, then $\hat{f}(x)$ is E^{l_1, \ldots, l_n} , (4)

for
$$l_i = 1, ..., p_i, i = 1, ..., n$$

- If the If part of (1) is the same as If part of (4), then $E^{l_1,...,l_n}$ is C^r .
- Otherwise, it is considered as a new fuzzy set
- Using the fuzzy rule $\prod_{i=1}^{n} q_i$ provide fuzzy system for $\hat{g}(X|\theta_g)$:

If
$$x_1$$
 is $B_1^{l_1}, ..., x_n$ is $B_n^{l_n}$, then $\hat{g}(x)$ is $H^{l_1,...,l_n}$ (5)

for $l_i = 1, ..., q_i, i = 1, ..., n$

- If the If part of (1) is the same as If part of (5), then $H^{l_1,...,l_n}$ is D^r .
- Otherwise, it is considered as a new fuzzy set

Consider:

Inference engine: production; Fuzzifier: singleton; Difizzifier: center average

$$f(X|\theta_{f}) = \frac{\sum_{l_{1}=1}^{p_{1}} \cdots \sum_{l_{n}=1}^{p_{n}} \bar{y}_{l}^{l_{1}\dots l_{n}} [\prod_{i=1}^{n} \mu_{A_{i}}^{l_{i}}(x_{i})]}{\sum_{l_{1}=1}^{p_{1}} \cdots \sum_{l_{n}=1}^{p_{n}} [\prod_{i=1}^{n} \mu_{A_{i}}^{l_{i}}(x_{i})]}$$

$$g(X|\theta_{g}) = \frac{\sum_{l_{1}=1}^{q_{1}} \cdots \sum_{l_{n}=1}^{q_{n}} \bar{y}_{g}^{l_{1}\dots l_{n}} [\prod_{i=1}^{n} \mu_{B_{i}}^{l_{i}}(x_{i})]}{\sum_{l_{1}=1}^{q_{1}} \cdots \sum_{l_{n}=1}^{q_{n}} [\prod_{i=1}^{n} \mu_{B_{i}}^{l_{i}}(x_{i})]}$$

$$(6)$$

• Consider $\bar{y}_{f}^{h_{1}...h_{n}}$ and $\bar{y}_{g}^{h_{1}...h_{n}}$ are free parameters which are summed in $\theta_{f} \in R^{\prod_{i=1}^{n} p_{i}}$ and $\theta_{g} \in R^{\prod_{i=1}^{n} q_{i}}$, respectively:

$$f(X|\theta_{f}) = \theta_{f}^{T} \varepsilon(X)$$

$$g(X|\theta_{g}) = \theta_{g}^{T} \eta(X)$$

$$\varepsilon(X) = \frac{\prod_{i=1}^{n} \mu_{A_{i}}{}^{l_{i}}(x_{i})}{\sum_{l_{1}=1}^{p_{1}} \cdots \sum_{l_{n}=1}^{p_{n}} [\prod_{i=1}^{n} \mu_{A_{i}}{}^{l_{i}}(x_{i})]}$$

$$\eta(X) = \frac{\prod_{i=1}^{n} \mu_{B_{i}}{}^{l_{i}}(x_{i})}{\sum_{l_{1}=1}^{q_{1}} \cdots \sum_{l_{n}=1}^{q_{n}} [\prod_{i=1}^{n} \mu_{B_{i}}{}^{l_{i}}(x_{i})]}$$
(8)
$$(9)$$

Adapting Rule:

$$\dot{\theta}_{f} = -\gamma_{1} e^{T} P b \varepsilon(X) \dot{\theta}_{g} = -\gamma_{2} e^{T} P b \eta(X)$$
(10)

where −γ₁, −γ₂ are pos. numbers and P is Pos. def. matrix obtained from Lyapunov equation Λ^TP + PΛ = −Q, Q > 0

$$\Lambda = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & . \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \dots & 1 \\ -k_n & -k_{n-1} & \dots & \dots & -k_1 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

It should be mentioned that the system knowledge (1) is considered on selecting θ_f(0), θ_g(0)

(本語) (本語) (本語) (本語)

Indirect Adaptive Fuzzy Control

Indirect Adaptive Fuzzy Control

通 ト イヨ ト イヨト

э

10/13

Direct Adaptive Fuzzy Control

Consider *n*th order nonlinear system

$$x^{(n)} = f(x, \dot{x}, \dots, x^{(n-1)}) + bu$$

$$y = x$$

where $X = (x, \dot{x}, ..., x^{(n-1)})$: state vector; $u \in R$: input; $y \in R$: Output; f: unknown functions, b > 0 is cons. and unknown

- Assume the system is controllable
- Objective: find $u = u(X|\theta)$ based on fuzzy rules and an adaptation law for adjusting θ s.t. y tracks y_m
- Main difference of direct and indirect adaptive fuzzy control is type of available expert knowledge
- In direct adaptive fuzzy control, assume a set of IF-then laws based on control knowledge

f
$$x_1$$
 is $P_1^r, ..., x_n$ is P_n^r , then *u* is Q^r , $r = 1, 2, ..., L_u$ (11)

11/13

The Fuzzy Control Design

• $u_D(X|\theta_f)$ is obtained in the following two steps

- 1. For x_i , i = 1, ..., n, define m_i fuzzy set of $A_i^{l_i}$, $l_i = 1, ..., m_i$, s.t. they include p_i^r , $r = 1, ..., L_u$ in(11)
- 2. Using the fuzzy rule $\prod_{i=1}^{n} m_i$ provide fuzzy system for $u(X|\theta_u)$:

If
$$x_1$$
 is $A_1^{l_1}, \ldots, x_n$ is $A_n^{l_n}$, then u is S^{l_1, \ldots, l_n} , (12)

for $l_i = 1, ..., m_i, i = 1, ..., n$

- If the If part of (12) is the same as If part of (11), then $S^{l_1,...,l_n}$ is Q^r .
- Otherwise, it is considered as a new fuzzy set
- Consider: Inference engine: Production; Fuzzifier: singleton; Difizzifier: center mean

$$u(X|\theta_f) = \frac{\sum_{l_1=1}^{m_1} \cdots \sum_{l_n=1}^{m_n} \bar{y}_u^{l_1 \dots l_n} [\prod_{i=1}^n \mu_{A_i}^{l_i}(x_i)]}{\sum_{l_1=1}^{m_1} \cdots \sum_{l_n=1}^{m_n} [\prod_{i=1}^n \mu_{A_i}^{l_i}(x_i)]}$$
(13)

Outline

Farzaneh Abd

Adaptive Fuzzy Control Control

• Consider $\bar{y}_u^{l_1...l_n}$ are adjustable parameters, summed in $\theta_u \in R^{\prod_{i=1}^{n} p_i}$:

$$u(X|\theta_u) = \theta_u^T \varepsilon(X)$$

$$\varepsilon(X) = \frac{\prod_{i=1}^n \mu_{A_i}^{l_i}(x_i)}{\sum_{l_1=1}^{m_1} \cdots \sum_{l_n=1}^{m_n} [\prod_{i=1}^n \mu_{A_i}^{l_i}(x_i)]}$$
(14)

► Adapting Rule:

$$\dot{\theta}_u = \gamma_3 e^T p_n \varepsilon(X)$$

▶ where - \(\gamma_3\), is pos. numbers and \(p_n\) is the last column of \(P\) is Pos. def. matrix obtained from Lyapunov equation

$$\Lambda^{T}P + P\Lambda = -Q, Q > 0, \quad \Lambda = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & . \\ . & . & . & \dots & . \\ 0 & 0 & 0 & \dots & 1 \\ -k_{n} & -k_{n-1} & \dots & . \\ -k_{n-1} & \dots & . & . \\ \end{bmatrix}_{\frac{1}{2} = -0 < C}$$
ollahi Computational Intelligence Lecture 11 12/2

Direct Adaptive Fuzzy Control

Direct Adaptive Fuzzy Control

