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Classification

I The data can be classified according to similar patterns, attributes,
features, and other characteristics.

I Classification, also termed clustering.
I Why fuzzy clustering?

I The regularities may not be precisely defined for clustering.
I Using fuzzy models to formulated problem may be easier to solve

computationally.
I In fuzzy models the variables are continuous  their derivatives can be

used to find the direction of search. But in crisp model the only can
have 0/1 mem values.

I In this lecture we are introducing one of the most famous
classification alg.: c-means clustering [1]

Farzaneh Abdollahi Computational Intelligence Lecture 11 3/13



Outline Classification Hard c-Means Fuzzy C-Means

Hard c-Means

I Consider:
I X = {x1, x2, ..., xn} set of data
I c : # of clusters (1 < c < n)

I c = n classes  each data sample into its own class
I c = 1 places all data samples into the same class
I Neither case requires any effort in classification

I a family of sets {Ai , i = 1, 2, ..., c} as a hard c-partition of X if
I
⋃c

i=1 Ai = X
I Ai ∩ Aj = ∅ 1 ≤ i 6= j ≤ c
I 0 ⊂ Ai ⊂ X
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Hard c-Means

I c-partition can be reformulated by mem. fcn (µAi
(xk) = µik).

I µik =

{
1 xk ∈ Ai

0 xk 6= Ai
k = 1, ..., n, i = 1, ..., c , Ai ⊂ X , xk ∈ X

I Given the value of µik , hard c-partitions X uniquely, and vice versa.

I The µik ’s should satisfy the following three conditions
I µik ∈ {0, 1}, 1 ≤ i ≤ c , 1 ≤ k ≤ n
I
∑c

i=1 µik = 1, ∀k ∈ {1, ..., k}
I 0 <

∑n
k=1 µik < n,∀i ∈ {1, ..., c}
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{
1 xk ∈ Ai
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I Given the value of µik , hard c-partitions X uniquely, and vice versa.

I The µik ’s should satisfy the following three conditions
I µik ∈ {0, 1}, 1 ≤ i ≤ c , 1 ≤ k ≤ n
I
∑c

i=1 µik = 1, ∀k ∈ {1, ..., k}
I 0 <

∑n
k=1 µik < n,∀i ∈ {1, ..., c}

I The first two conditions  each xk ∈ X should belong to one and
only one cluster.

I The last condition  each cluster Ai must contain at least one and at
most n − 1 data points.

I µik can be shown in a Uc×n matrix
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Hard c-Means

I Example: Let X = {x1 = orange, x2 = apple, x3 = cucumber}
I For c = 2, which of the following matrices can be hard c-partition

matrix?

U1 =

[
1 1 0
0 0 1

]
,U2 =

[
1 1 0
1 0 1

]
,

U3 =

[
1 1 1
0 0 0

]
,U4 =

[
1 0 1
0 1 0

]
I Hard c-partition space for X (Mc) is a set of all possible hard

c-partition matrices U
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How to choose the optimal partitions?

I For example, c = 10 and n = 25, there are roughly 1018 distinct
10-partitions!!

I There are three types of methods for finding optimal partitions:
1. Hierarchical methods

I merging and splitting to construct new clusters are based on some
measure of similarity

I The result is a hierarchy of nested clusters.

2. Graph-theoretic methods
I xi are considered as nodes which are connected to each other through

edges
I The criterion for clustering is typically some measure of connectivity

3. Objective function methods
I an objective function measuring the ”desirability” of clustering

candidates is established
I local minima of the objective function are defined as optimal clusters.
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I c-means method is an objective fun. method

I The most popular objective function: overall within-group sum of
squared errors:
Jw (U,V ) =

∑n
k=1

∑c
i=1 µik‖xk − vi‖2

I U = [µik ]
I V = {v1, ..., vc}, vi : center of cluster Ai vi =

∑n
k=1 µikxk∑n
k=1 µik

I vi is the average of all the points in cluster Ai

I The closer the points of each cluster to their centers (vi ), the smaller
the J(U,V )
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i=1 µik‖xk − vi‖2

I U = [µik ]
I V = {v1, ..., vc}, vi : center of cluster Ai vi =

∑n
k=1 µikxk∑n
k=1 µik

I vi is the average of all the points in cluster Ai

I The closer the points of each cluster to their centers (vi ), the smaller
the J(U,V )

I How to find the optimal pair (U,V ) for Jw?

I c-means alg. (ISODATA alg.) can provide an optimal method
I The objective function is developed to achieve two goals

simultaneously:

1. Minimize the Euclidean distance between each data point in a cluster
and its cluster center

2. Maximize the Euclidean distance between cluster centers.
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Hard c-Means Algorithm

1. Suppose there are n data points, X = {x1, ..., xn}. Fix c , 2 ≤ c < n,
and initialize U(0) ∈ Mc .
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Hard c-Means Algorithm

1. Suppose there are n data points, X = {x1, ..., xn}. Fix c , 2 ≤ c < n,
and initialize U(0) ∈ Mc .

2. At iteration l , l = 0, 1, 2, ... compute the c-mean vectors

v
(l)
i =

∑n
k=1 µ

(l)
ik xk∑n

k=1 µ
(i)
ik

where [µ
(l)
ik ] = U(l), and i = 1, 2, ..., c .
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0 otherwise
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4. Compare U(l) with U(l+1): if ‖U(l+1) − U(l)‖ < ε for a small constant
ε stop; otherwise, set l = l + 1 and go to Step 2.
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Example
I Suppose n = 15, c = 2

I U(0) =[
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

]
I The hard c-means algorithm stops at l = 3 with

U(3) = U(4) =[
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

]
I ∴ x1 to x7 are grouped into A1

I x8 to x15 are grouped into A2

I Although the fig is symmetric the clusters are
unsymmetry

I x8 cold not belong to both clusters

I A way to solve this problem is using the fuzzy c-means
alg,
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Fuzzy C-Means

I in fuzzy c-means the mem. fcn (µik should respect the following
conditions

I µik ∈ [0, 1], 1 ≤ i ≤ c , 1 ≤ k ≤ n
I
∑c

i=1 µik = 1, ∀k ∈ {1, ..., k}
I Ai have 1 o n members (last condition of mem. fcn. for hard c-means

is relaxed for fuzzy c-means)

I Fuzzy c-partition space for X (Mfc) is a set of all possible fuzzy
c-partition matrices U

Farzaneh Abdollahi Computational Intelligence Lecture 11 11/13



Outline Classification Hard c-Means Fuzzy C-Means

Fuzzy C-Means

I in fuzzy c-means the mem. fcn (µik should respect the following
conditions

I µik ∈ [0, 1], 1 ≤ i ≤ c , 1 ≤ k ≤ n
I
∑c

i=1 µik = 1, ∀k ∈ {1, ..., k}
I Ai have 1 o n members (last condition of mem. fcn. for hard c-means

is relaxed for fuzzy c-means)

I Fuzzy c-partition space for X (Mfc) is a set of all possible fuzzy
c-partition matrices U

I An example of possible U for n = 3, c = 2: U =

[
0.9 0.2 0.9
0.1 0.8 0.1

]
I For c-means alg. we are looking U = [µik ] ∈ Mfc and V = [v1, ..., vn]

s.t.
Jm(U,V ) =

∑n
k=1

∑c
i=1(µik)m‖xk − vi‖2 is minimized. (m ∈ (1,∞))
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Fuzzy c-Means Algorithm

1. Suppose there are n data points, X = {x1, ..., xn}. Fix c , 2 ≤ c < n,
m ∈ (1,∞), and initialize U(0) ∈ Mfc .
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Example
I Consider previous example with c = 2,m = 1.25, ε = 0.01

I U(0) =

[
0.854 0.146 0.854 0.854 . . . 0.854
0.146 0.854 0.146 0.146 . . . 0.146

]
I The fuzzy c-means algorithm stops at l = 5

I The data in the right and left wings are well classified, while the
bridge x8 belongs to both clusters to almost the same degree
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J. C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithms.
Plenum Press, 1981.
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