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Outline Classification

Classification

» The data can be classified according to similar patterns, attributes,
features, and other characteristics.

» Classification, also termed clustering.
» Why fuzzy clustering?

» The regularities may not be precisely defined for clustering.
» Using fuzzy models to formulated problem may be easier to solve
computationally.

> In fuzzy models the variables are continuous ~~ their derivatives can be
used to find the direction of search. But in crisp model the only can
have 0/1 mem values.

» In this lecture we are introducing one of the most famous
classification alg.: c-means clustering [1]
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Hard c-Means

» Consider:
» X ={x1,x2,..., Xy} set of data
> c: # of clusters (1 < ¢ < n)

» ¢ = n classes ~~ each data sample into its own class
» ¢ =1 places all data samples into the same class
> Neither case requires any effort in classification

» a family of sets {A;,i =1,2,...,c} as a hard c-partition of X if

> U A =X
» ANA =0 1<i#j<c
» 0CA CX
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Hard c-Means

> c-partition can be reformulated by mem. fen (pa,(xk) = pik)-
>u,~k—{(1) j::;;\" k=1,..,n i=1..¢c, AiCc X,xx € X
» Given the value of pj, hard c-partitions X uniquely, and vice versa.
» The uj's should satisfy the following three conditions
» ux €{0,1}, 1<i<c,1<k<n
» > k=1, Vke{1,.. k}

vy

- N e \
» 0< > ik <nVie{l, .., c}
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Hard c-Means

> c-partition can be reformulated by mem. fen (pa,(xk) = pik)-
- 1 x €A -

>,qu—{0 X £ A k=1,..,n,

» Given the value of pj, hard c-partitions X uniquely, and vice versa.

i=1,..,¢c, AicX,xxeX

» The uj's should satisfy the following three conditions

» ux €{0,1}, 1<i<c,1<k<n
> l//,kfl Vk € {1,...,k}
> 0- Sor_ikik < n Vi €{1,...c}

» The ﬁrst two conditions ~~ each x, € X should belong to one and
only one cluster.

» The last condition ~~ each cluster A; must contain at least one and at
most n — 1 data points.

> ik can be shown in a Ucx, matrix
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Hard c-Means

» Example: Let X = {x; = orange, xo = apple, x3 = cucumber}

» For ¢ = 2, which of the following matrices can be hard c-partition

matrix?
0 1 10
Ul_[ 1}’“2_{101}’
1 1 1 01
U3_[o 0 0}’”“_[0 1 0]
» Hard c-partition space for X (M) is a set of all possible hard
c-partition matrices U

1
0

= O
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How to choose the optimal partitions?

» For example, ¢ = 10 and n = 25, there are roughly 108 distinct
10-partitions!!
» There are three types of methods for finding optimal partitions:
1. Hierarchical methods

> merging and splitting to construct new clusters are based on some
measure of similarity
> The result is a hierarchy of nested clusters.
2. Graph-theoretic methods
> x; are considered as nodes which are connected to each other through
edges
> The criterion for clustering is typically some measure of connectivity
3. Objective function methods
> an objective function measuring the " desirability” of clustering
candidates is established
> local minima of the objective function are defined as optimal clusters.
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» c-means method is an objective fun. method

» The most popular objective function: overall within-group sum of
squared errors:

Ju(U, V) =370 iy il = vill?

> U= [pu

» V={n Ve}, vio center of cluster A; v; = 2y HikXk
e r ZZ—ll’ffk

» v; is the average of all the points in cluster A;

v

The closer the points of each cluster to their centers (v;), the smaller
the J(U, V)
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Hard c-Means

> c-means method is an objective fun. method

» The most popular objective function: overall within-group sum of
squared errors:

Jw(U, V) = 22:1 Z:'::l ik || Xk — ViH2

> U= [pi]

» V ={w,..., v}, vji center of cluster A; v; = %
k=1 1

> v; is the average of all the points in cluster A;

\4

The closer the points of each cluster to their centers (v;), the smaller
the J(U, V)

» How to find the optimal pair (U, V) for J,?

» c-means alg. (ISODATA alg.) can provide an optimal method

» The objective function is developed to achieve two goals
simultaneously:
1. Minimize the Euclidean distance between each data point in a cluster
and its cluster center
2. Maximize the Euclidean distance between cluster centers.
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Hard c-Means Algorithm

1. Suppose there are n data points, X = {x1,...,x5}. Fix ¢, 2<c < n,
and initialize U € M..
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Hard c-Means Algorithm

1. Suppose there are n data points, X = {x1,...,xn}. Fix ¢, 2<c < n,
and initialize U e M,.

2. At iteration /,  =0,1,2,... compute the c-mean vectors
ORI /Ry

' Iy ”Eti)

where [uf,i)] =UN andi=1,2,...,c.
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Hard c-Means Algorithm

1. Suppose there are n data points, X = {x1,...,xp}. Fix ¢, 2<c < n,
and initialize U e M.
2. At iteration /, | =0,1,2, ... compute the c-mean vectors
ORI oYY 2
! Dkt /"EL)
where [ufl?] =UN andi=1,2,...,c.
3. Update U to UU+D) using
/ . I
() _ [ 1 = v = minigjec(lxe = v )
ik 0 otherwise
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Hard c-Means Algorithm

1. Suppose there are n data points, X = {xy,...,xs}. Fix ¢, 2< ¢ < n,
and initialize U®) € M,.
2. At iteration [, 1 =0,1,2,... compute the c-mean vectors

S0 _ Ty

! ZZ:U‘%)
where [uf,i)] =UN andi=1,2,....c.
3. Update U() to UUFY) using
I . I
N R e e e (Pl )
! 0 otherwise

4. Compare U with U+ if |01 — )| < ¢ for a small constant
€ stop; otherwise, set / = /4 1 and go to Step 2.

Farzaneh Abdollahi Computational Intelligence Lecture 11 9/1



Outline ¢ ation Hard c-Means

Hard c-Means Algorithm

1. Suppose there are n data points, X = {xy,...,xs}. Fix ¢, 2< ¢ < n,
and initialize U©) € M.. guess ¢ hard clusters

2. At iteration [, 1 =0,1,2,... compute the c-mean vectors
O by i
! dh—1 F‘Eii)
where [uf,i)] =UN andi=1,2,....c.
3. Update U() to UUFY) using
L0 Z L1 = vl = mimggec (o — v 1)
ik 0 otherwise
4. Compare U() with UU+D): if [[UU+1) — )| < ¢ for a small constant
€ stop; otherwise, set / = /4 1 and go to Step 2.
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Hard c-Means Algorithm

1. Suppose there are n data points, X = {xy,...,xs}. Fix ¢, 2< ¢ < n,
and initialize U©) € M.. guess ¢ hard clusters

2. At iteration [, 1 =0,1,2,... compute the c-mean vectors
ORI /YT
! pDy F‘Eii)
where [uf,i)] = U and i =1,2,...,c. find their centers
3. Update U() to UUFY) using
L0 Z L1 = vl = mimggec (o — v 1)
ik 0 otherwise
4. Compare U() with UU+D): if [[UU+1) — )| < ¢ for a small constant
€ stop; otherwise, set / = /4 1 and go to Step 2.
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Hard c-Means Algorithm

1. Suppose there are n data points, X = {xq,...,xn}. Fix ¢, 2< ¢ < n,
and initialize U(® € M. guess c hard clusters

2. At iteration /, / =0,1,2,... compute the c-mean vectors

S = 2=t Pk Xk “%).Xk
' Iy ”Eti)
where [uf,i)] = U, and i =1,2,...,c. find their centers
3. Update U() to UU+D) using
oD — i _ 0
(0 )1 lbae= vl = minmgice(llxe = vl eaniocate
0 otherwise

cluster memberships to minimize squared errors between the data and
the current centers

4. Compare U with UU+D): if | U+ — )] < ¢ for a small constant
€ stop; otherwise, set / = /+ 1 and go to Step 2.
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Hard c-Means Algorithm

1. Suppose there are n data points, X = {x1,...,xp}. Fix ¢, 2<c < n,
and initialize U ¢ M.. guess c hard clusters

2. At iteration /, /| =0,1,2,... compute the c-mean vectors
() _ Tia
Vit = 5 0
> k=1 My
where [uf,i)] = U, and i =1,2,...,c. find their centers
3. Update U() to UUFY) using

(1) _ [ 1 = vl = minigec(lxe = vl
k10 otherwise
cluster memberships to minimize squared errors between the data and
the current centers
4. Compare U with YU+ if |UUV+1) — )| < ¢ for a small constant
€ stop; otherwise, set / = /+ 1 and go to Step 2.stop when looping
ceases to lower J,, significantly

reallocate
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Example
» Suppose n =15, c =2

111 110000O0O0O0O0O0O0O0

| 00000111111 1111
» The hard c-means algorithm stops at / = 3 with

Ut = y® =

11 11111000O0O0O0O0TO0

(00000001 111111 1] [, L
> . x3 to x7 are grouped into A; 3 S I R

&4 &10

> xg to xy5 are grouped into Ap 1o s

1 | 5
» Although the fig is symmetric the clusters are
unsymmetry

» xg cold not belong to both clusters
» A way to solve this problem is using the fuzzy c-means

alo
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Fuzzy C-Means

» in fuzzy c-means the mem. fen (ujx should respect the following
conditions

» k€01, 1<i<c1<k<n
» S k=1 Vke{l,.. k}
» A; have 1 o n members (last condition of mem. fcn. for hard c-means
is relaxed for fuzzy c-means)

» Fuzzy c-partition space for X (My.) is a set of all possible fuzzy
c-partition matrices U
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Fuzzy C-Means

Fuzzy C-Means

|

in fuzzy c-means the mem. fcn (pjx should respect the following
conditions

» ux €[0,1], 1<i<c1<k<n

> Zle pik =1, Vk € {1,...7/(}
A; have 1 o n members (last condition of mem. fcn. for hard c-means
is relaxed for fuzzy c-means)

Fuzzy c-partition space for X (Mg.) is a set of all possible fuzzy
c-partition matrices U

09 0.2 09
0.1 08 0.1 ]

For c-means alg. we are looking U = [uik] € Mg and V = [v1, ..., vp]

s.t.
(U, V) =500 50 (i)™ || xk — vi||? is minimized. (m € (1, 00))

An example of possible U for n=3,c =2: U = [
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Fuzzy c-Means Algorithm

1. Suppose there are n data points, X = {xy,...,x5}. Fix ¢, 2< ¢ < n,
m € (1,00), and initialize U(®) € M.
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Fuzzy c-Means Algorithm

1. Suppose there are n data points, X = {x1,...,xn}. Fix ¢, 2<c < n,
m € (1,00), and initialize U(®) € M.
2. At iteration /, | =0,1,2,... compute the c-mean vectors
ORI A
/ ()
where [uf,i)] =UN andi=1,2,...,c.
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Fuzzy c-Means Algorithm

1. Suppose there are n data points, X = {x1,...,xn}. Fix ¢, 2<c < n,
m € (1,00), and initialize U € M.
2. At iteration /, 1 =0,1,2,... compute the c-mean vectors
() _ Zica ()™
Vit =5 0
D g ()™
where [uf,i)] =UN andi=1,2,...,c.
3. Update U to UUHD) using

/+1 .
,,,I(k+):%(,),1glgc,1gk§n
e (Il
= =D

J
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Fuzzy c-Means Algorithm

1. Suppose there are n data points, X = {x1,...,xp}. Fix ¢, 2 <c < n,
m € (1,00), and initialize U(®) € M.
2. At iteration /, | =0,1,2,... compute the c-mean vectors
ORI
S L
where [uf,?] =UN andi=1,2,...,c.
3. Update U() to UUFD) using
pt — 1 1<i<cl<k<n
Sl

kafvj

4. Compare U) with UU+1): if | UU+H) — )| < ¢ for a small constant
€ stop; otherwise, set / = /4 1 and go to Step 2.
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Fuzzy c-Means Algorithm
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Fuzzy c-Means Algorithm
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Fuzzy c-Means Algorithm

1. Suppose there are n data points, X = {x1,...,xp}. Fix ¢, 2 <c < n,
m € (1,00), and initialize U(®) € M.
2. At iteration /, | =0,1,2,... compute the c-mean vectors
ORI
S L
where [uf,?] =UN andi=1,2,...,c.
3. Update U() to UUFD) using
pt — 1 1<i<cl<k<n
Sl

kafvj

4. Compare U) with UU+1): if | UU+H) — )| < ¢ for a small constant
€ stop; otherwise, set / = /4 1 and go to Step 2.
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Example
» Consider previous example with ¢ =2, m = 1.25,¢ = 0.01
> U© — 0.854 0.146 0.854 0.854 ... 0.854

~ | 0.146 0.854 0.146 0.146 ... 0.146

» The fuzzy c-means algorithm stops at / =5

» The data in the right and left wings are well classified, while the
bridge xg belongs to both clusters to almost the same degree

3 &15
4199 o1
o{‘6 2812
282 &5 X7 X X fua
L1 99 47 01 0
.’1(4 &10
Q
1451 X13
59 5 5 .01
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Fuzzy C-Means
(0]

[§ J. C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithms.
Plenum Press, 1981.
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