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Sliding Control
I Sliding control is a robust control technique to control systems with

model imprecision and uncertainties.

I Sliding control is based on the idea that ”controlling a 1st order system is
much easier than the general nth order system

I To achieve this goal:

1. A first order system (sliding surface) is proposed and provide a condition
(sliding condition) to make the introduced surface an invariant set of the
system stability of the system

2. A control is designed to reach to the sliding surface

I Providing perfect performance in presence of arbitrary parameter
inaccuracy is at the price of extremely high control activity.

I ∴ a modification of control law is required to provide an effective
trade-off between tracking performance and parametric uncertainty.

I In some specific applications, such as those involving the control of
electric motor the unmodified control law can be applied directly.

Farzaneh Abdollahi Nonlinear Control Lecture 10 3/18



Outline Sliding Control Continuous Approximations of Switching Control Laws

Sliding Surface
I Consider single input dynamics

x (n) = f (x) + b(x)u (1)
I f is not exactly known, upper bounded by known continuous function of x
I b is not exactly known, its sign is known and upper bounded by known

continuous function of x

I Objective: find u, s.t. x track xd = [xd , ẋd , . . . , x
(n−1)
d ]T in presence of

imprecision on f (x) and b(x)

I Tracking error vector: x̃ = x− xd = [x̃ ˙̃x . . . x̃ (n−1)]

I Define a time-varying surface S(t) in state-space Rn by scaler equation
s(x; t) = 0:

s(x; t) = (
d

dt
+ λ)n−1x̃ (2)

where λ > 0 conts.
I for n = 2 s = ˙̃x + λx̃ , s is a weighted sum of position error and velocity

error
I for n = 3 s = ¨̃x + 2λ ˙̃x + λ2x̃
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Sliding Surface

I The problem of tracking the n-dimensional vector xd (the original
tracking problem) can be replaced by a 1st-order stabilization
problem in s.

I Given initial condition xd(0) = x(0), the problem of tracking x ≡ xd is
equivalent to remaining on the surface S(t) for all t > 0 (s ≡ 0 represents
a linear differential equation whose unique solution is x̃ ≡ 0)

I In (1),s contains x̃(n − 1) , we only need to differentiate s once for the
input u to appear.

I Bounds on s can be directly translated into bounds on x̃ s represents a
true measure of tracking performance. When x̃ = 0:

∀t ≥ 0, |s(t)| ≤ Φ⇒ ∀t ≥ 0, |x̃ (i)| ≤ (2λ)iε, i = 0, ..., n − 1 (3)

where ε = Φ/λn−1
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I Proof: x̃ is obtained from s through a sequence of first-order lowpass filters,
shown in Fig.

I Let y1 output of first filter: y1 =
∫ t

0
e−λ(t−T )s(T )dT , |s| ≤ Φ⇒

|y1| ≤ Φ
∫ t

0
e−λ(t−T )dT = (Φ/λ)(1− e−λt) ≤ Φ/λ

I Repeat the same procedure all the way to yn−1 = x̃ |x̃ | ≤ Φ/λn−1 = ε

I To obtain x̃ (i), see the Fig b

I The output of the (n − 1− i)th filter: z1 < Φ/λn−1−i

I Note that p±λ
p+λ = 1− λ

λ+p ≤ 1 + λ
λ+p

I ∴|x̃ (i)| ≤ (Φ/λn−1−i )(1 + λ
λ )i = (2λ)iε

I If x̃ 6= 0,  , (3) is obtained asymptotically, within a short time-constant
(n − l)/λ.
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Sliding Condition

I To keep the scalar s at zero, a control law u in
should be found s.t outside of S(t):

1

2

d

dt
s2 ≤ −η|s| (4)

where η > 0 conts.

I ∴ The squared ”distance” to the surface, s2 ,
decreases along all system trajectories. (V = 1

2 s2)

I (4), so-called sliding condition, makes the surface an
invariant set.

I By keeping the invariant set, some disturbances or
dynamic uncertainties can be tolerated.

I S(t) is sliding surface; behavior of the system on the
surface is sliding mode
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I If it is on the sliding surface, the system behavior can be expressed by
( d
dt + λ)n−1x̃ = 0

I If sliding condition is guaranteed, for nonzero initial condition,
(x(0) 6= xd(0)), the surface S(t) will be reached in a finite time smaller
than |s(t = 0)|/η:

I For treach: required time to reach s = 0, integrate (4) from 0 to treach:
s(treach)− s(0) = 0− s(0) < −η(treach − 0) treach ≤ |s(t = 0)|/η

I Once on the surface, tracking error tends exponentially to zero with time
constant (n − 1)/λ

I from the sequence of (n − 1) filters of time constants equal to 1/λ
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Local Asymptotic Stabilization

I For n = 2
I sliding surface is a line with slope −λ
I Starting with any initial conditions, the traj. reaches the time-varying

surface in finite time ≤ |s(t = 0)|/η
I Then slide along the surface towards xd exp. with time constant 1/λ
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I After defining the sliding surface s, the control is designed in two steps

1. A feedback control law u is selected so as to verify sliding condition (4)
2. The discontinuous control law u is suitably smoothed to achieve an optimal

trade-off between control bandwidth and tracking precision
I To cope with modeling imprecision and disturbances, the control law has to

be discontinuous across S(t).
I Implementing the associated control switchings is always imperfect

(switching is not instantaneous, and the value of s is not known with
infinite precision)  , yields chattering

I chattering  high control activity and may excite high frequency dynamics
neglected in modeling (such as unmodeled structural modes, neglected
time-delays, and so on).
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Example
I Consider ẍ = f + u (5)

I f is unknown,but estimated by f̂ , estimation error on f assumed to be bounded
by known function F = F (x , ṫ) |f̂ − f | ≤ F

I To track x ≡ xd , define the sliding surface:

s = (
d

dt
+ λ)x̃ = ˙̃x + λx̃ ṡ = f + u − ẍd + λ ˙̃x

I Best approximation û to achieve ṡ = 0
û = −f̂ + ẍd − λ ˙̃x

I The feedback control strategy is chosen intuitive ”if the error is negative, push
hard enough in the positive direction (and conversely)”

I To satisfy (4), a term discontinuous across the surface s = 0:
u = û − ksgn(s)

where
sgn(s) = 1 if s > 0

sgn(s) = −1 if s < 0
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I Note that this strategy works only for first-order systems.

I By choosing k to be large enough (4) can be guaranteed

1

2

d

dt
s2 = ṡ.s = (f − f̂ )s − k |s|

’

I letting k = F + η 1
2

d
dt s

2 ≤ −η|s|
I Integral Control: To minimize the reaching time and make s(t = 0) = 0,

one can use integral control, i.e.
∫ t
0 x̃(r)dr as variable of interest.

I In the previous example, let us define s as
s = ( d

dt + λ)2(
∫ t

0
x̃(r)dr) = ˙̃x + 2λx̃ + λ2

∫ t

0
x̃(r)dr

I The approximation of control law will be changed to

û = −f̂ + ẍd − 2λ ˙̃x − λ2x̃

I The control law, u and k will remain the same
I Now if x̃(0) 6= 0 s = ˙̃x + 2λx̃ + λ2

∫ t

0
x̃(r)dr − ˙̃x(0)− 2λx̃(0)

I ∴ Although x̃(0) 6= 0, s(t = 0) = 0
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Gain Margins

I Consider ẍ = f + bu

where the control gain , b which is may be time-varying or
state-dependent is unknown, but of known bounds

0 < bmin ≤ b ≤ bmax

I choose estimation of b as its geometric mean of bounds: b̂ = (bminbmax)1/2.
I ∴ β−1 ≤ b̂

b ≤ β,
I β = (bmax/bmin)1/2 is gain margin

I With s and û defined in previous example u = b̂−1[û − ksgn(s)]

I ṡ = (f − bb̂−1f̂ ) + (1− bb̂−1)(−ẍd + λ ˙̃x)− bb̂−1ksgn(s)

I ∴ to satisfy sliding condition
k ≥ |b̂b−1f − f̂ + (b̂b−1 − 1)(−ẍd + λ ˙̃x)|+ ηb̂b−1

I Since f = f̂ + (f − f̂ ), where |f − f̂ | ≤ F k ≥ β(F + η) + (β − 1)|û|
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Continuous Approximations of Switching Control Laws

I For system dynamics (1) a unique smooth
control to track a feasible trajectory is
u(t) = b(xd)−1[ẍd − f (xd)]

I Control laws obtained by using sliding control
which provides ”perfect” tracking in the face
of model uncertainty, are discontinuous across
the surface S(t), , chattering.

I In general, chattering is not undesirable, since
it causes high control activity, and may excite
high-frequency dynamics neglected in
modeling

I The chattering is avoided by smoothing out
the control discontinuity in a thin boundary
layer neighboring the switching surface
B(t) = {X , |s(x ; t)| ≤ Φ}, Φ > 0 is the boundary layer thickness
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I Outside of B(t), the control law u is like
before to guarantee that the boundary layer is
invariant

I All trajectories starting inside B(t = 0)
remain inside B(t) for all t > 0

I Inside B(t), u is interpolated
I For instance,, inside B(t), in the

expression of u replace sgn(s) by s/Φ, as
shown in Fig

I Example: Consider the system dynamics
ẍ + a(t)ẋ2 cos 3x = u

I 1 ≤ a(t) ≤ 2, for simulation
a(t) = | sin t|+ 1,

I λ = 20, η = 0.1
I f̂ = 1.5ẋ2 cos 3x , F = 0.5ẋ2| cos 3x |
I By using the switching control law:

u = û − ksgn(s) = 1.5ẋ2cos3x + ẍd −
20 ˙̃x − (0.5ẋ2| cos 3x |+ 0.1)sgn( ˙̃x + 20x̃)
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Example Cont’d

I Tracking performance is excellent at the price of high control chattering

I Modify control law by considering a thin boundary layer of thickness 0.1

I u = û−ksat(s/Φ) = 1.5ẋ2cos3x+ẍd−20 ˙̃x−(0.5ẋ2| cos 3x |+0.1)sat( ˙̃x+20x̃/0.1)

I The tracking is not as perfect as before but acceptable, instead the control law
is smooth
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I The smoothing of control discontinuity inside B(t) actually assigns a
lowpass filter structure to the local dynamics of the variables to
eliminating chattering

I Recognizing this filter-like structure allows us to
I tune up the control law by selecting λ and Φ properly s.t achieve a trade-off

between tracking precision and robustness to unmodeled dynamics.
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Thank You
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