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Motivations

I A system is called linear if its behavior set satisfies linear superposition
laws: .i.e. ∀ z1, z2 ∈ B and constant c ∈ R z1 + z2 ∈ B, cz1 ∈ B

I A nonlinear system is simply a system which is not linear.

I Powerful tools founded based on superposition principle make analyzing
the linear systems simple.

I All practical systems posses nonlinear dynamics.

I Sometimes it is possible to describe the operation of physical systems by
linear model around its operating points

I Linearized system can provide us an approximate behavior of the
nonlinear system

I But in analyzing the overall system behavior, often linearized model
inadequate or inaccurate.
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I Linearization is an approximation in he neighborhood of an operating
system  it can only predict local behavior of nonlinear system. (No info
regarding nonlocal or global behavior of system)

I Due to richer dynamics of nonlinear systems comparing to the linear ones,
there are some essentially nonlinear phenomena that can take place only
in presence of nonlinearity

I Essentially nonlinear phenomena
I Finite escape time: The state of linear system goes to infinity as t →∞;

nonlinear system’s state can go to infinity in finite time.
I Multiple isolated equilibria: linear system can have only one isolated

equilibrium point which attracts the states irrespective on the initial state;
nonlinear system can have more than one isolated equilibrium point, the
state may converge to each depending on the initial states.

I Limit cycle: There is no robust oscillation in linear systems. To oscillate
there should be a pair of eigenvalues on the imaginary axis which due to
presence of perturbations it is almost impossible in practice; For nonlinear
systems, there are some oscillations named limit cycle with fixed amplitude
and frequency.
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Essentially nonlinear phenomena

I Subharmonic,harmonic or almost periodic oscillations: A stable linear
system under a periodic input  output with the same frequency;
A nonlinear system under a periodic input  can oscillate with
submultiple or multiple frequency of input or almost-periodic oscillation.

I Chaos: A nonlinear system may have a different steady-state behavior
which is not equilibrium point, periodic oscillation or almost-periodic
oscillation. This chaotic motions exhibit random, despite of deterministic
nature of the system.

I Multiple modes of behavior: A nonlinear system may exhibit multiple
modes of behavior based on type of excitation:

I an unforced system may have one limit cycle.
I Periodic excitation may exhibit harmonic, subharmonic,or chaotic behavior

based on amplitude and frequency of input.
I if amplitude or frequency is smoothly changed, it may exhibit discontinuous

jump of the modes as well.
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I Linear systems: can be described by a set of ordinary differential
equations and usually the closed-form expressions for their solutions are
derivable. Nonlinear systems: In general this is not possible  It is
desired to make a prediction of system behavior even in absence of
closed-form solution. this type of analysis is called qualitative analysis.

I Despite of linear systems, no tool or methodology in nonlinear system
analysis is universally applicable  their analysis requires a wide verity of
tools and higher level of mathematic knowledge

I ∴ stability analysis and stabilizablity of such systems and getting familiar
with associated control techniques is the basic requirement of graduate
studies in control engineering.

I The aim of this course are
I developing a basic understanding of nonlinear control system theory and its

applications.
I introducing tools such as Lyapunov’s method analyze the system stability
I Presenting techniques such as feedback linearization to control nonlinear

systems.
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Reference Books

I Text Book: Nonlinear Systems, H. K. Khalil, 3rd edition,
Prentice-Hall, 2002

I Other reference Books:

I Applied Nonlinear Control, J. J. E. Slotine, and W. Li,
Prentice-Hall, 1991

I Nonlinear System Analysis, M. Vidyasagar, 2nd edition,
Prentice-Hall, 1993

I Nonlinear Control Systems, A. Isidori, 3rd edition
Springer-Verlag, 1995
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Topics

Topic Date Refs

Introduction Week 1

Phase plane Analysis and Week 2,3 Chapter 1-3
Fundamental Properties

Stability Theory Week 4-7 Chapter 4,8,9

Input-to-state, I/O stability Week 8,9 Chapter 4,5
and Absolute stability

Passivity Week 10 Chapter 10

Feedback linearization Week 11 Chapter 12,13

Some nonlinear design tools Week 12,13 Chapter 14
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I At this course we consider dynamical systems modeled by a finite
number of coupled first-order ordinary differential equations:

ẋ = f (t, x , u) (1)

where x = [x1, . . . , xn]T : state vector, u = [u1, . . . , up]T : input
vector, and f (.) = [f1(.), . . . , fn(.)]T : a vector of nonlinear functions.

I Euq. (1) is called state equation.

I Another equation named output equation:

y = h(t, x , u) (2)

where y = [y1, . . . , yq]T : output vector.
I Equ (2) is employed for particular interest in analysis such as

I variables which can be measured physically
I variables which are required to behave in a desirable manner

I Equs (1) and (2) together are called state-space model.
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I Most of our analysis are dealing with unforced state equations where u
does not present explicitly in Equ (1):

ẋ = f (t, x)

I In unforced state equations, input to the system is NOT necessarily zero.
I Input can be a function of time: u = γ(t), a feedback function of state:

u = γ(x), or both u = γ(t, x) where is substituted i Equ (1).

I Autonomous or Time-invariant Systems:

ẋ = f (x) (3)

I function of f does not explicitly depend on t.
I Autonomous systems are invariant to shift in time origin, i.e. changing t to
τ = t − a does not change f .

I The system which is not autonomous is called nonautonomous or
time-varying.

Farzaneh Abdollahi Nonlinear Control Lecture 1 10/15



Outline Motivation Reference Books Topics Introduction

I Equilibrium Point x = x∗

I x∗ in state space is equilibrium point if whenever the state starts at x∗, it
will remain at x∗ for all future time.

I for autonomous systems (3), the equilibrium points are the real roots of
equation: f (x) = 0.

I Equilibrium point can be
I Isolated: There are no other equilibrium points in its vicinity.
I a continuum of equilibrium points
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Pendulum

I Employing Newton’s second law of motion, equation of
pendulum motion is:

ml θ̈ = −mg sin θ − kl θ̇

l : length of pendulum rod;
m: mass of pendulum bob;
k : coefficient of friction;
θ: angle subtended by rod and vertical axis

I To obtain state space model,
let x1 = θ, x2 = θ̇:

ẋ1 = x2

ẋ2 = −g

l
sinx1 −

k

m
x2
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Pendulum

I To find equilibrium point: ẋ1 = ẋ2 = 0

0 = x2

0 = −g

l
sinx1 −

k

m
x2

I The Equilibrium points are at (nπ, 0) for n = 0,±1,±2, . . .
I Pendulum has two equilibrium points: (0, 0) and (π, 0),
I Other equilibrium points are repetitions of these two which correspond to

number of pendulum full swings before it rests

I Physically we can see that the pendulum rests at (0, 0), but hardly
maintain rest at (π, 0)
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Tunnel Diode Circuit
I The tunnel diode is characterized by iR = h(vR)

I The energy-storing elements are
C and L which assumed are linear and
time-invariant iC = C dvC

dt , vL = LdiL
dt .

I Employing Kirchhoff’s current law:
iC + iR − iL = 0

I Employing Kirchhoff’s voltage law:
vC − E + RiL + vL = 0

I for state=space model, let x1 = vC , x2 = iL and
u = E as a constant input:

ẋ1 =
1

C
[−h(x1) + x2]

ẋ2 =
1

L
[−x1 − Rx2 + u]
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Tunnel Diode Circuit
I To find equilibrium point: ẋ1 = ẋ2 = 0

0 =
1

C
[−h(x1) + x2]

0 =
1

L
[−x1 − Rx2 + u]

I Equilibrium points depends on E
and R

x2 = h(x1) =
E

R
− 1

R
x1

I For certain E and R, it may have 3 equilibrium
points (Q1,Q2,Q3).

I if E↑ , and same R  only Q3 exists.
I if E↓ , and same R  only Q1 exists.
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