Introduction

Nonlinear Control Lecture 1: Introduction

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

_				
	n //	b c		
arzane	пв		юı	

通 ト イヨ ト イヨト

Motivation

Reference Books

Topics

Introduction Examples

2

- 4 回 > - 4 回 > - 4 回 >

Motivations

- A system is called linear if its behavior set satisfies linear superposition laws: .i.e. ∀ z₁, z₂ ∈ B and constant c ∈ R→ z₁ + z₂ ∈ B, cz₁ ∈ B
- ► A nonlinear system is simply a system which is not linear.
- Powerful tools founded based on superposition principle make analyzing the linear systems simple.
- All practical systems posses nonlinear dynamics.
- Sometimes it is possible to describe the operation of physical systems by linear model around its operating points
- Linearized system can provide us an approximate behavior of the nonlinear system
- But in analyzing the overall system behavior, often linearized model inadequate or inaccurate.

イロト イポト イヨト イヨト

- ► Linearization is an approximation in the neighborhood of an operating system ~→ it can only predict local behavior of nonlinear system. (No info regarding *nonlocal* or *global* behavior of system)
- Due to richer dynamics of nonlinear systems comparing to the linear ones, there are some <u>essentially nonlinear phenomena</u> that can take place only in presence of nonlinearity
- Essentially nonlinear phenomena
 - ► Finite escape time: The state of linear system goes to infinity as t → ∞; nonlinear system's state can go to infinity in *finite time*.
 - Multiple isolated equilibria: linear system can have only one isolated equilibrium point which attracts the states irrespective on the initial state; nonlinear system can have more than one isolated equilibrium point, the state may converge to each depending on the initial states.
 - Limit cycle: There is no robust oscillation in linear systems. To oscillate there should be a pair of eigenvalues on the imaginary axis which due to presence of perturbations it is almost impossible in practice; For nonlinear systems, there are some oscillations named <u>limit cycle</u> with fixed amplitude and frequency.

Essentially nonlinear phenomena

- Subharmonic, harmonic or almost periodic oscillations: A stable linear system under a periodic input ~> output with the same frequency; A nonlinear system under a periodic input ~> can oscillate with submultiple or multiple frequency of input or almost-periodic oscillation.
- Chaos: A nonlinear system may have a different steady-state behavior which is not equilibrium point, periodic oscillation or almost-periodic oscillation. This chaotic motions exhibit random, despite of deterministic nature of the system.
- Multiple modes of behavior: A nonlinear system may exhibit multiple modes of behavior based on type of excitation:
 - ► an unforced system may have one limit cycle.
 - Periodic excitation may exhibit harmonic, subharmonic, or chaotic behavior based on amplitude and frequency of input.
 - ► if amplitude or frequency is smoothly changed, it may exhibit discontinuous jump of the modes as well.

► Linear systems: can be described by a set of ordinary differential equations and usually the *closed-form expressions* for their solutions are derivable. Nonlinear systems: In general this is not possible ~~ It is desired to make a prediction of system behavior even in absence of closed-form solution. This type of analysis is called qualitative analysis.

- ► Despite of linear systems, no tool or methodology in nonlinear system analysis is *universally* applicable ~→ their analysis requires a wide verity of tools and higher level of mathematic knowledge
- ... stability analysis and stabilizablity of such systems and getting familiar with associated control techniques is the basic requirement of graduate studies in control engineering.
- ► The aim of this course are

Motivation

- developing a basic understanding of nonlinear control system theory and its applications.
- introducing tools such as Lyapunov's method analyze the system stability
- Presenting techniques such as feedback linearization to control nonlinear systems.

Reference Books

- ► **Text Book:** Nonlinear Systems, H. K. Khalil, 3rd edition, Prentice-Hall, 2002
- ► Other reference Books:
- Applied Nonlinear Control, J. J. E. Slotine, and W. Li, Prentice-Hall, 1991
- Nonlinear System Analysis, M. Vidyasagar, 2nd edition, Prentice-Hall, 1993
- Nonlinear Control Systems, A. Isidori, 3rd edition Springer-Verlag, 1995

Topics

Торіс	Date	Refs	
Introduction, Phase plane, Analysis	Weeks 1,2	Chapters 1-3	
Stability Theory	Weeks 3-5	Chapters 4,8,9	
Input-to-state, I/O stability	Weeks 6,7	Chapters 4,5	
Passivity	Week 8	Chapter 10	
Feedback Control	Weeks 9,10	Chapter 12	
Feedback linearization	Weeks 11,12	Chapters 12,13	
Sliding Mode	Weeks 13,14		
Back Stepping	Weeks 15,16		

Topics

イロト イヨト イヨト イヨト

2

At this course we consider dynamical systems modeled by a finite number of coupled first-order ordinary differential equations:

Introduction

$$\dot{x} = f(t, x, u) \tag{1}$$

where $x = [x_1, \ldots, x_n]^T$: state vector, $u = [u_1, \ldots, u_p]^T$: input vector, and $f(.) = [f_1(.), \ldots, f_n(.)]^T$: a vector of nonlinear functions.

- Euq. (1) is called *state equation*.
- Another equation named *output equation*:

$$y = h(t, x, u) \tag{2}$$

where $y = [y_1, \ldots, y_q]^T$: output vector.

▶ Equ (2) is employed for particular interest in analysis such as

- variables which can be measured physically
- variables which are required to behave in a desirable manner
- ► Equs (1) and (2) together are called state-space model.

Most of our analysis are dealing with unforced state equations where u does not present explicitly in Equ (1):

$$\dot{x}=f(t,x)$$

- ► In unforced state equations, input to the system is **NOT** necessarily zero.
- ▶ Input can be a function of time: $u = \gamma(t)$, a feedback function of state: $u = \gamma(x)$, or both $u = \gamma(t, x)$ where is substituted in Equ (1).
- Autonomous or Time-invariant Systems:

$$\dot{x} = f(x) \tag{3}$$

- function of *f* does not explicitly depend on *t*.
- Autonomous systems are invariant to shift in time origin, i.e. changing t to $\tau = t a$ does not change f.
- ► The system which is not autonomous is called nonautonomous or time-varying.

• Equilibrium Point $x = x^*$

- ► x* in state space is equilibrium point if whenever the state starts at x*, it will remain at x* for all future time.
- For autonomous systems (3), the equilibrium points are the real roots of equation: f(x) = 0.
- Equilibrium point can be
 - Isolated: There are no other equilibrium points in its vicinity.
 - a continuum of equilibrium points

イロト イポト イヨト イヨト

Pendulum

Employing Newton's second law of motion, equation of pendulum motion is:

$$ml\ddot{ heta} = -mg\sin heta - kl\dot{ heta}$$

l: length of pendulum rod;
m: mass of pendulum bob;
k: coefficient of friction;
θ: angle subtended by rod and vertical a>

 To obtain state space model, let x₁ = θ, x₂ = θ:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}sinx_1 - \frac{k}{m}x_2$$

Amirkahi

Pendulum

• To find equilibrium point: $\dot{x}_1 = \dot{x}_2 = 0$

$$0 = x_2$$

$$0 = -\frac{g}{l}sinx_1 - \frac{k}{m}x_2$$

- ▶ The Equilibrium points are at $(n\pi, 0)$ for $n = 0, \pm 1, \pm 2, ...$
 - Pendulum has two equilibrium points: (0,0) and $(\pi,0)$,
 - Other equilibrium points are repetitions of these two which correspond to number of pendulum full swings before it rests
- ► Physically we can see that the pendulum rests at (0,0), but hardly maintain rest at (π,0)

・ 同 ト ・ ヨ ト ・ ヨ ト

Tunnel Diode Circuit

- The tunnel diode is characterized by $i_R = h(v_R)$
- ► The energy-storing elements are C and L which assumed are linear and time-invariant i_C = C ^{dv_C}/_{dt}, v_L = L ^{di_L}/_{dt}.
- Employing Kirchhoff's current law: $i_C + i_R - i_L = 0$
- ► Employing Kirchhoff's voltage law:
 v_C E + Ri_L + v_L = 0

▶ for state space model, let x₁ = v_C, x₂ = i_L u = E as a constant input:

$$\dot{x}_1 = \frac{1}{C}[-h(x_1) + x_2]$$

$$\dot{x}_2 = \frac{1}{L}[-x_1 - Rx_2 + u]$$

(a) Tunnel diode circuit

(b) tunnel diode $v_R - i_R$ characteristic.

A E > A E >

Introduction

Tunnel Diode Circuit

• To find equilibrium point: $\dot{x}_1 = \dot{x}_2 = 0$

$$0 = \frac{1}{C}[-h(x_1) + x_2]$$

$$0 = \frac{1}{L}[-x_1 - Rx_2 + u]$$

 Equilibrium points depends on E and R

$$x_2=h(x_1)=\frac{E}{R}-\frac{1}{R}x_1$$

Equilibrium points of the tunnel diode circuit.

