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ADC
AFE
AGC
AP
BMI
CCIA
CMFB
CMRR
CT-DSM
DAC
DAR
DR
DSM
ENOB
FFT
IA
ICMR
LFP
LNA
LSB
MSB
NEF
NSSAR
OTA
PEF
PGA
PM

aols L

Analog-To-Digital Converter

Analog Front-End

Adaptive Gain Control

Action Potential

Brain-Machine Interface
Capacitively-Coupled Instrumentation Amplifier
Common Mode Feedback

Common Mode Rejection Ratio
Continuous-Time Delta-Sigma Modulator
Digital-To-Analog Converter

Digital Auto-Ranging

Dynamic Range

Delta-Sigma Modulator

Effective Number of Bits

Fast Fourier Transform

Instrumentation Amplifier

Input Common Mode Range

Local Field Potential

Low Noise Amplifier

Least Significant Bit

Most Significant Bit

1Noise Efficiency Factor

Noise Shaping Sar

Operational Transconductance Amplifier
1Power Efficiency Factor

Programable Gain Amplifier

Phase Margin
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SAR
SFDR
SNDR
THD
UGB
VGA

Successive Approximation Register
Spurious-Free Dynamic Range
Signal to Noise and Distortion Ratio
Total Harmonic Distortion

Unity Gain Bandwidth

Variable Gain Amplifier
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Real-time

Pipeline

Static Preamplifier

Signal Folding

Source Degeneration

Fast Fourier Transform
Stimulation

Transconductance

Cross Coupled Transistors
Effective Number of Bits
Instrumentation Amplifier
Capacitively-Coupled Instrumentation Amplifier
Programable Gain Amplifier
Operational Transconductance Amplifier
Low Noise Amplifier
Chopping Technique

Rail to Rail Topology
Thermometer Code Generator
Pole Shifting

Blanking

Continuous-Time Delta-Sigma
Tail

Brain-Machine Interface
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Input Common Mode Rangel
Soft-Reset

Settling Time

Power Efficiency Factor
Noise Efficiency Factor
Pseudo Resistor

Neural Recording

Flash

Adaptive Filter

Adaptive Gain Control
Latch

Cerebro-Spinal Fluid
Total Harmonic Distortion
Dynamic Range
Strong-Arm Comaparator
Bio-markers
Neuromodulation

Inverter
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Abstract

Abstract

In recent decades, interest in studying and understanding brain activity has
increased significantly. Examining neural signals is one of the powerful tools in this
endeavor. For this purpose, two common methods of neural recording are used:
conventional and closed-loop systems, with closed-loop systems being more efficient.
However, the presence of large artifact signals resulting from neural stimulation has made
the neural recording process challenging, necessitating strategies to address these issues.

In this work, an analog amplifier along with an analog-to-digital converter has been
utilized. The analog amplifier consists of a low-noise amplifier, a variable gain amplifier
with an automatic gain control circuit, and a voltage buffer. By employing source
degeneration techniques and class AB output in the low-noise amplifier, suitable noise
performance has been achieved. The use of a variable gain amplifier has also reduced the
precision requirements of the analog-to-digital converter. Additionally, a 10-bit SAR
analog-to-digital converter is used in this structure.

Finally, to ensure the circuit's performance, simulations were conducted using 0.18-
micron technology in Cadence software. The proposed interface circuit, with a 1.8V power
supply and at a temperature of 37 “C, consumes 9 pW for digitizing signals with a bandwidth
of 10 kHz. The peak SNDR and dynamic range are 58.40 dB and 81.83 dB, respectively.
These results are compared with previous works in this field.

Key Words: Closed-loop neural recording, Variable Gain Amplifier (VGA), Low-noise,
Low-power, Analog-to-Digital Converter (ADC).
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