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 تقدیر 

كمک او  تا به  قرار داد  و عنايت  مورد لطف    بنده خود رابا سپاس فراوان از پروردگار متعال كه بار ديگر  

زحمات ارزشمند استاد راهنماي گرامي  دانم از  به انجام برسانم. در اينجا بر خود لازم مي كار را  اين  بتوانم  

داشته باشم. در طول تحصيل دوره دكتري، ايشان  كمال تشكر و قدرداني را  جناب آقاي دكتر محمد ياوري  

بلكه در ابعاد مختلف زندگي همواره    ،خويش سيراب كردند سرشار  نه تنها بنده را از چشمه علم و معرفت  

جناب آقاي دكتر  ممتحن گرامي اين رساله،    اساتيد زحمات  چنين از  همبنده بوده و هستند.    و دلسوز  راهنما

شاهين آشتياني )استاد دانشگاه  جناب آقاي دكتر  فر )استاد دانشگاه علم و صنعت ايران(،  سيد اديب ابريشمي

محسن  جناب آقاي دكتر  پور )استاد دانشگاه صنعتي اميركبير(، و  عبدالعلي عبدي جناب آقاي دكتر  تهران(،  

 )استاد دانشگاه صنعتي اميركبير( كمال تشكر و قدرداني را دارم.   معزي

ها  كه در اين راه اينجانب را همراهي نموده و همواره در سختي   عزيزم   مادر   و   از پدردانم  لازم مي چنين  هم

ام،  و خانواده   از خداوند منان براي همه اساتيد   قدرداني نمايم.داشتند    روحيه اميد و تلاش را در من زنده نگه 

 . در تمامي مراحل زندگي مسئلت دارمرا صحت و تندرستي و موفقيت 

 

 



 .چکیده

 

 
 أ 

با استفاده از يک لينک  و    FSKزمان توان و داده با مدولاسيون  نامه، يک فرستنده براي انتقال همدر اين پايان

، لينک القايي دو بانده،  Eكننده توان كلاس  شامل تقويت  كه   القايي براي پروتز حلزون شنوايي پيشنهاد شده است

شود  ميدو فركانس رزونانس حاصل  ،  و سلونوئيد در اين لينک   PCBهاي  تركيب كويلبا  مدولاتور، و دمدولاتور است.  

به عنوان    MHz  10و    MHz  5شود. انتخاب  ميبه بار منتقل    FSKحامل  هر دو  در  زيادي  با راندمان    نياز توان مورد    و

چنين  نظر باشد و همالكترومغناطيسي در بافت بدن قابل صرف  شود تلفات حرارتي امواجمي  باعث  FSKهاي  حامل

  طعات قدست يافت. فرستنده پيشنهادي با استفاده از    3/33برابر با %    DRCF، به نسبت  Mbps  5/2نرخ داده  به ازاي  

COTS  از يک لايه گوشت گاو با ضخامت    وسازي شده است  پيادهmm  4  اِتيلن براي تقليد ناحيه  در كيسه پلي

در    PCBهاي  كويل  هِرمتِيک به عنوان محافظ    mm  1سازگار با ضخامت  ن زيستااِسكالپ پشت گوش، و از سيليك

بوده و اثرات پارازيتي    كم ن خيلي  امايعات و بافت بدن استفاده شده است. ضريب گذردهي الكتريكي سيليكبرابر  

بدن   ميبافت  كويل كمينه  در  داده شبه.  كندرا  ارسال  ازاي  نرخ  به  با  مقدار  Mbps  5/2تصادفي   ،PDL    وPTE 

است. در    10-5تر از  كمنيز  گيري شده  اندازه  BERاست.    8/38%    و  mW  2/48گيري شده به ترتيب برابر با  اندازه

و با   TSMCشركت    nm  180هر دو بخش مدولاتور و گيرنده در تكنولوژي  ،  يكسوسازو با اضافه كردن    مرحله بعد

استفاده شده    COTS  قطعات  Spiceكننده توان نيز از مدل  براي تقويت   و  جانمايي شده است  Cadenceافزار  نرم

سازي شده در گوشه  شبيه  PTEو    PDL  ،هابين كويل  mm  6و فاصله    Mbps  5/2است. به ازاي ارسال داده با نرخ  

TT   و دمايC° 27  به ترتيب برابر باmW 97/34  % است. مقدار  55/33وBER  است. 10-5تر از  نيز كم 

پزشكي، استفاده از يک فرايند تكرار شونده براي رسيدن به  زيست  پروتزهايهاي القايي براي  در طراحي لينک 

مانند   نظر  مورد  است. شبيه  PTEو    PDLاهداف  بر  سازيضروري  مبتني  پارامترهاي    FEMهاي  استخراج  براي 

نامه، يک مدل دو بعدي با تقارن  در اين پاياناين فرايند است.  بر بودن  الكترومغناطيسي، يكي از دلايل اصلي زمان

آن  پيشنهاد شده است كه قابليت    COMSOL Multiphysicsافزار  و سلونوئيد در نرم  PCBهاي  محوري براي كويل

  .شودمي  FEMهاي  سازيدر تبديل حجم هندسي سه بعدي به نواحي دو بعدي، موجب سرعت بخشيدن به شبيه

و سلونوئيد با مشخصات هندسي مناسب براي كاشت    PCBبه منظور بررسي دقت مدل پيشنهادي، يک نمونه كويل  

دهد مدل  نشان ميسازي مبتني بر مدل دو بعدي نتايج شبيه باگيري نتايج اندازهتطابق در بدن ساخته شده است. 

را در    لينک القاييطراحي  فرايند  و    FEMهاي مبتني بر  سازيشبيهمورد نياز در  در عين حال كه زمان  پيشنهادي  

ها مانند ضريب  از دقت خوبي نيز در استخراج پارامترهاي الكترومغناطيسي كويل  ،دهددرصد كاهش مي  90حدود  

 سري، اندوكتانس، خازن پارازيتي موازي، و ضريب كيفيت برخوردار است.   ACتزويج، مقاومت 

انتقال هم  های كلیدی:واژه  ،  FSKزمان توان و داده، مدولاسيون  پروتز حلزون شنوايي، لينک القايي دو بانده، 

حوري. مدل دو بعدي با تقارن م ،راندمان انتقال توان
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Programmable Gain Amplifier  كننده با بهره متغير تقويت 
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Class-E Power Amplifier  كننده توان كلاس تقويتE 
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Dynamic Range  محدوده پويايي 

Modulator  مدولاتور 

Modulation مدولاسيون 
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Data Rate  نرخ داده 
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Overdrive Voltage  ولتاژ اضافه تحريک 

Unregulated Voltage  ولتاژ تنظيم نشده 

Ferrite Core  هسته فريت 
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Rectifier  يكسوساز 
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ABSTRACT 

In this thesis, a transmitter is proposed for simultaneous transmission of power and data 

with FSK modulation for cochlear implants with only one inductive link. This transmitter 

includes class-E power amplifier, dual-band inductive link, modulator, and demodulator. 

The combination of PCB coils and solenoids in this link results in two resonant frequencies 

and the required power is transmitted to the load with high efficiency in both FSK carriers. 

Selection of 5 MHz and 10 MHz as FSK carriers makes the tissue thermal losse negligible, 

and also, for the data rate of 2.5 Mbps, the DRCF ratio will be 33.3%. The proposed 

transmitter is implemented using COTS components and a ribs portion of beef with thickness 

of 4 mm in a polyethylene bag is used to emulate the scalp tissue. Also, biocompatible 

silicone with 1 mm thickness is used as the hermetic insulation of PCB coils against body 

tissue and fluids. The permitivity of silicon is very low and minimizes the parasitic effects 

of beef ribs. For a transmission of pseudorandom bit stream with 2.5 Mbps data rate, the 

measured PDL and PTE are 48.2 mW and 38.8%, respectively. Also, the measured BER is 

less than 10-5. In the next step, a voltage rectifier is added in the receiver side and both the 

modulator and receiver are implemented in TSMC CMOS 180 nm using cadence. Spice 

models of COTS components has also been used for the power amplifier. Considering the 

rectifier, for a transmission of pseudorandom bit stream with 2.5 Mbps data rate and 

separation of 6 mm between the coils, the simulated PDL and PTE in TT corner and 27 °C 

are 34.97 mW and 33.55%, respectively. The BER is also less than 10-5. 

In design of inductive links for biomedical prosthesis, it is necessary to use an iterative 

process to achieve the desired goals such as PTE and PDL. FEM based simulations in 

extraction of the electromagnetic parameters is one of the main reasons slowing this process. 

In this thesis, a two-dimensional axisymmetric modeling is proposed for PCB coils and 

solenoids in COMSOL Multiphysics that its capability in converting the three-dimensional 

geometric volume into two-dimensional regions speeds up the FEM based simulations. In 

order to investigate the accuracy of the proposed model, a PCB coil and a solenoid with 

suitable geometric parameters for implanting in body has been fabricated. The measurement 

results and the two-dimensional modeling based simulation results are in good agreement 

and confirm each other. As a result, while the proposed model reduces the required time in 

design process of inductive link and FEM based simulations by about 90%, it also has a good 

accuracy in extracting the electromagnetic parameters of coils such as coupling coefficient, 

series AC resistance, inductance, parallel parasitic capacitance, and quality factor.  

Keywords: Cochlear Implant, Dual-Band Inductive Link, Simultaneus Transmission of 

Power and Data, FSK Modulation, Power Transmission Efficiency, Two-Dimentional 

Axisymmetric Modeling.
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