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A B S T R A C T

In this paper, we propose a new time-domain method for calculating the coefficients in continuous-time sigma-
delta modulators (CT ΣΔMs) in the presence of excess loop delay (ELD). Additionally, we present a two-step
method to compensate for the effect of dynamic element matching (DEM) in multibit digital-to-analog con-
verters (DACs). Our method intuitively investigates the loop-filter outputs and yields systematic equations
suitable for computer aided design (CAD) softwares. The equations are easily applicable to modulators with an
arbitrary feedback pulse shape at each stage and can be extended to higher-order modulators. The generality and
flexibility of these equations enable their use for altering the modulator’s feedback pulse shape and recalculating
modulator coefficients. Furthermore, we extended our approach for ELD compensation in modulators utilizing
the DEM block for feedback DAC linearization, allowing for DEM block delays exceeding one clock cycle.
Simulation results validate the accuracy of the analytical calculations.

1. Introduction

Continuous-time sigma-delta modulators (CT ΣΔMs) offer higher
speed and lower power consumption in comparison to their discrete-
time counterparts [1]. However, their maximum sampling speed is
limited by the excess loop delay (ELD), which refers to the delay from
the quantizer input to the digital-to-analog converter (DAC) output. ELD
adversely affects the noise shaping performance of the noise transfer
function (NTF). This leads to a reduction in signal-to-noise ratio (SNR)
and cause peaking in the signal transfer function (STF) which can
potentially destabilize the modulator [2]. More delay can increase
loop-filter’s order and out-of-band gain of NTF. To maintain stability,
the ELD must not exceed one period of the sampling clock [3]. Addi-
tionally, incorporating a dynamic element matching (DEM) block in
multi-bit CT ΣΔMs, as depicted in Fig. 1(a), to address DAC nonlinearity,
exacerbates ELD, further limiting the sampling speed.

To enhance modulator performance, several ELD compensation
methods have been proposed [4–35]. The conventional scheme, illus-
trated in Fig. 1(b), employs a fast path around the quantizer [5] utilizing
an adder. Using additional adder would increase the power consump-
tion. Therefore, to minimize modulator power consumption, the fast

signal path can be injected into the last integrator input through a digital
differentiator and capacitor-based voltage DAC (CV-DAC) [6–7].
Various circuit techniques have been developed to implement fast
feedback loop with minimal delay and feedback coefficient error [8–10,
27]. Traditional methods theoretically fully compensate for ELD smaller
than one clock cycle without altering the STF of the modulator, although
with practical limitations. To overcome the sampling speed limit
imposed by the quantizer and DAC finite acquisition time, the fast path
can be implemented using a sample and hold circuit, as depicted in Fig. 1
(c) [11,12]. This enables the modulator to accommodate delays
exceeding one clock cycle in the outermost feedback path, although with
some degradation in SNR due to additional in-band noise. However, this
solution can increase power consumption due to the need for
fast-settling sample-and-hold, especially in high-speed applications.
Variations of this approach have been explored in [13,14].

The fast feedback loop also can be shifted to digital domain after
quantizer [15,16], where logic elements can operate at higher fre-
quencies, although this may increase the signal level at quantizer input,
potentially leading to saturation. Also, in [17], it is tried to nullify the
second-highest coefficient in loop filter’s numerator to alleviate the need
to the coefficient’s recalculation in presence of ELD. However, it fails to
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retrieve SNR as in [13]. Other approaches include a switching method
that can alter the transfer function with a clock [18], a digitally
controlled threshold scheme [19], and a predictive comparator using
sign-LMS algorithm for estimating the coefficients [20]. The latter
approach enables compensation of up to two sampling periods in low
pass ΣΔM. However, for higher-order compensation, the prediction
block would add complexity. Also, methods introduced in [21–24] are
limited to rectangular DAC pulse shape and hardware-intensive algo-
rithm. Furthermore, some compensation methods have been proposed
for delays exceeding one clock cycle in [11–14], but they lack a sys-
tematic procedure.

To reduce power consumption, recent work utilizes successive
approximation register (SAR) based analog-to-digital converter (ADC)
as the quantizer [25–27]. However, one-bit-a-time conversion in SAR
ADC introduces more delays. In [25], they utilize bitwise approach to
decrease the delay. However, it is not supporting the cascade of in-
tegrators with feed-forward (CIFF) architecture. In addition, [26] uti-
lizes a time-interleaving quantizer. They used a different approach for
most significant bits (MSBs) and least significant bits (LSBs) which is the
combination of conventional method and digital method.

Among the various compensation methods, the traditional approach
is widely used in high-speed applications [8–10,15,28,29] due to its
ability to match the response of non-ideal modulator to the ideal one.
However, a significant challenge is the calculation of the feedback co-
efficients and fast path gain. The impulse invariance technique is
commonly used for determination of modulator parameters [3,30],
while considering the effect of ELD. A main drawback of this method is
that the feedback pulse shape must be fully determined in s-domain, and
also for every new pulse shape, the coefficients must be recalculated
using transformation between the z- and s- domains [31], which is not
feasible for all feedback waveforms. In practice, the circuit
non-idealities alter the ideal pulse shape, complicating coefficient cal-
culations, especially for higher order modulators. Due to these com-
plexities associated with frequency-based methods, time-based
approaches have been proposed. It is demonstrated that the coefficients
of a CT ΣΔM’s loop-filter depends solely on the area and delay of the

DAC pulse [31]. This insight suggests that using pulses with same area
and delay would not alter the NTF. Based on this principle, a
time-domain method based on Taylor series expansion for ELD
compensation has been introduced [31].

In this paper, we investigate the traditional ELD compensation
technique in time-domain, aiming to derive systematic equations for
calculating modified modulator coefficients and further we extend our
analysis to propose a two-step ELD compensation method. Despite its
apparent complexity, our equations can be easily calculated in software
programs. Two main DAC pulse shapes commonly used in the literature
are non-return-to-zero (NRZ) and return-to-zero (RZ) pulses [1]. The
NRZ pulse shape is u(t) - u(t-Ts), indicating that it is zero for t > Ts.
However, the RZ DAC pulse shape is u(t) - u(t-0.5Ts), which exhibits a
discontinuity at t = 0.5Ts. While NRZ and RZ pulses are predominantly
used in modulators, alternative pulse shapes such as sine-shaped and
exponential decaying pulses have been explored to mitigate sensitivity
to jitters [32–35]. Therefore, for generality, we design our method to be
applicable to the modulators with arbitrary feedback pulse shapes. By
using arbitrary pulse shapes, the effect of circuit non-idealities on the
feedback waveform can be taken into the account. As a result, the
equations can be adopted for feedback waveform transformation. This
adaptability is particularly advantageous for selecting various feedback
pulses that may not be easily expressible in the s-domain, facilitating
their use with the impulse invariance technique. Subsequently, we
extend our approach to a more generalized structure as proposed in [11,
31] and illustrated in Fig. 1(c), which clarify the theoretical conditions
necessary for maintaining an ideal SNR.

The remainder of the paper is organized as follows. In Section 2, we
describe our approach intuitively and demonstrate the sequence of
compensation steps. Section 3 focuses on the analytical extraction of
equations for compensation parameters. Building on the insights gained
in the previous sections, Section 4 extends the conventional ELD
compensation method to accommodate blocks with delays exceeding
one clock cycle in the feedback path. The validity of derived equations is
assessed through simulations in Section 5. Section 6 provides a discus-
sion on the results obtained, offering insights and interpretations.
Finally, Section 7 serves as conclusion of the paper, summarizing the key
concepts.

2. Time domain approach to ELD compensation

Both noise-shaping and oversampling techniques are used in CT
ΣΔMs to reduce the quantization noise significantly [1,36]. Quality of
noise-shaping in a ΣΔM is primarily determined by the transfer function
of loop filter and its output values at sampling instances [1,3]. ELD alters
these values from the ideal case, thereby degrading the performance of
modulator and its SNR. The main purpose of compensation methods is to
match the ideal and non-ideal loop filter outputs at sampling instances.
In most of CT ΣΔMs, the loop filter is implemented using OTA-RC
Structures [1,3,37].

While many publications achieve this purpose by investigating the
frequency domain transfer function of the loop filters, our approach is
different. We accomplish this task by comparing loop filters output
samples in time domain. This approach leverages two key strategies that
significantly reduce the complexity of procedure and make the extrac-
tion of equations more straight-forward. Firstly, we decompose the loop
filter of the modulator to single-input chains of integrators (COIs), which
are compensated independently. Secondly, we implement a progressive
correction of integrators output in each chain, which thereby simpli-
fying the error behavior in subsequent integrators of the chain (as
analytically investigated in Section 3). Ultimately, the compensated
loop filter is obtained by combining the modified COIs. In the following,
we describe this procedure conceptually.

Consider the loop filter depicted in Fig. 2(a). For simplicity, we can
represent this loop filter as a combination of cascaded COIs as illustrated
in Fig. 2(b). Additionally, we assume a rectangular NRZ DAC as shown in

Fig. 1. (a) General form of CTDSMs. (b) Traditional ELD Compensation [1]. (c)
Compensation using sample and hold for ELD more than one clock cycle [11].
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Fig. 3(a), to simplify the analysis. However, in Section 3, equations will
be extracted based on an arbitrary DAC pulse shape. Applying the first
strategy mentioned previously, our proposed procedure involves
compensating each COI individually.

Fig. 3(b) illustrates the impulse-response of a 1st-order COI (con-
taining one integrator) in both the ideal case and at the presence of ELD.
Due to the loop delay (td), the first sample is reduced and does not match
with the ideal case. However, the subsequent samples of the delayed
loop step response align exactly with the ideal case. By applying a direct
path from the DAC output to the COI output with an appropriate gain,

the error in the first sample of the chain can be corrected. This adjust-
ment ensures the proper noise-shaping performance and retrieves the
SNR, as shown in Fig. 4(a).

Expanding on this concept, the output of a 2nd-order COI in both the
ideal case and with ELD is presented in Fig. 3(c). In addition to the first
sample error observed in 1st-order COI, there is now an offset error for
all other samples due to history of 2nd integrator. To address this, we

Fig. 2. (a) An L-th order ΣΔ modulator. (b) Decomposition of modulator to single input chains of integrators.

Fig. 3. Input and output signal of integrators. (a) NRZ input pulse. (b) 1st order
COI output. (c) 2nd order COI output. (d) 3rd order COI output. Fig. 4. Compensated COIs. (a) 1st order. (b) 2nd order. (c) 3rd order.
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introduce a correction path to second integrator input with an appro-
priate gain of c22, as depicted in Fig. 4(b). This correction compensated
for the offset error in sample after the first sample. Subsequently, we
correct the error in first sample by introducing another path to the chain
output with a gain of c23. It is important to note that the addition of the
path containing c22 affects the error of the first sample, necessitating the
recalculation of c23.

Now, let us consider the 3rd order chain as a more general case. Fig. 3
(d) displays the output of the chain in both ideal and non-ideal cases.
Unlike lower-order chains, the output errors at sampling instances in-
crease over time and cannot be treated as a simple offset error. To
address this complexity, we employ our 2nd strategy in the compensa-
tion procedure for chains with orders greater than two. In this case, we
first compensate for the offset error at the 2nd integrator output of this
COI for samples beyond n > 1 using a path containing c32, as depicted in
Fig. 4(c). Analytical equations derived in the rest of this section
demonstrate that adding c32 transforms the increasing error of 3rd
integrator into a constant error, similar to 2nd order COIs. This constant
error can further be corrected with an additional path containing c33, as
shown in Fig. 4(c).

Finally, we correct the error of the first sample by using a direct path
from DAC output to the chain output with an appropriate gain of c34.
Following these steps and super-positioning the modified COIs result in
the compensated loop filter, as illustrated in Fig. 5, where we have:

kC1 = c31
kC2 = c21 + c32
kC3 = c11 + c22 + c33
kC4 = c12 + c23 + c34

(1)

It is worth mentioning that Fig. 4(c) represents the compensated
chain of three integrators, while Fig. 5 illustrates the compensated loop
filter of modulator with a feedback structure. In ideal case, all kci are
equal to unity.

3. Extraction of equations

We define IT0,T1n (g(t)) as the n-th order definite integral of g(t) over
[T0, T1], i.e.:

InT0 ,T1 (g(t)) =
∫T1

T0

∫tn− 1

T0

...

∫t1

T0

g(t0)dt0...dtn− 2dtn− 1 (2)

Consequently, for g(t) = C, where C is a constant value, it can be
shown that:

InT0 ,T1 (C) = CIn0,T1 − T0 (1) = C
(T1 − T0)n

n!
(3)

Now consider the chain of M ideal integrators depicted in Fig. 6(a),
which receives a time-limited signal at its input, similar to the feedback
pulse shape in ΣΔM shown in Fig. 3(a). Additionally, the compensated
chain is illustrated in Fig. 6(b). Our objective is to determine the co-
efficients c1 to cM+1 such that the output of two chains become equal at
sampling instances, t = nTS. It is important to note that the input pulse
causes a discontinuity at the output of integrators. For t ≤ TS, the output
of each integrator can be calculated by directly integrating of the input

signal. However, for t > TS, additional considerations are required. Let
us denote Qi(TS) to be the output of i th integrator at time TS, i.e.:

Qi(Ts) = c1

(
∏i

j=1
kj

)

Ii0,Ts (p(t)) (4)

The output of 1st integrator reaches its maximum value at time TS
and remains constant thereafter its input is zero for t> TS. However, this
constant value continues to contribute to the output of subsequent in-
tegrators, causing their outputs to increase over time. Therefore, at any
time greater than TS, the output of 2nd integrator comprises two com-
ponents. The first component is the 2nd order integration of input pulse
over [0, TS], and the second is the integration of the constant output of
1st integrator. Mathematically, this can be expressed as:

Q2(t) =

⎧
⎨

⎩

c1k1k2I20,t(p(t)) t ≤ TS
Q2(TS) + k2I1TS ,t(Q1(TS)) t > TS

(5)

where Q2(t) represents the output value of 2nd integrator over time. The
output of 3rd integrator, denoted as Q3(t), can be calculated by inte-
grating (5). Therefore, we have:

Q3(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1k1k2k3I30,t(p(t)) t ≤ TS
Q3(TS) + k3I1TS ,t(Q2(TS))

+ k2k3I2TS ,t(Q1(TS)) t > TS

(6)

Intuitively, for t > TS, the output of 3rd integrator comprises three
components:

1. Direct 3rd order integration of input pulse.
2. 2nd order integration of first integrator output at instance t = TS.
3. 1st order integration of 2nd integrator output at instance t = TS.

Given that Qi(TS) is a constant value according to (3), we can modify
(6) as follows:

Q3(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1k1k2k3I30,t(p(t)) t ≤ TS

Q3(TS) + k3Q2(TS)
(t − TS)1

1!

+ k2k3Q1(TS)
(t − T1)2

2!
t > TS

(7)

Finally, by substitution of Qi(TS) from (4), we have:

Fig. 5. Combination of compensated COIs.

Fig. 6. General form of m-th order (a) ideal COI, and (b) modified COI.
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Q3(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1k1k2k3I30,t(p(t)) t ≤ TS

c1k1k2k3I30,TS (p(t))

+ k1k2k3I20,TS (p(t))
(t − TS)1

1!
t > TS

+ k1k2k3I10,TS (p(t))
(t − TS)2

2!

(8)

By expanding the (8) to m-th order COI, we have:

Qm(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1

(
∏m

j=1
kj

)

Im0,t(p(t)) t ≤ TS

c1
∏m

j=1
kj

(
∑m

p=1
Ip0,TS (p(t))

(t − TS)m− p

(m − p)!

)

t > TS

(9)

As previously mentioned, in a CT ΣΔM, the output values at sampling
instances determine the noise-shaping ability. Hence, our intuitive
approach focuses on correcting the loop filter outputs at the sampling
points. The sampled output of integrators can be obtained by replacing t
= nTS into (9), i.e.:

Qm(nTs) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1

(
∏m

j=1
kj

)

Im0,TS (p(t)) n = 1

c1
∏m

j=1
kj

(
∑m

p=1
Ip0,TS (p(t))

((n − 1)Ts)m− p

(m − p)!

)

n > 1

(10)

Going through Eqs. (4) to (10) considering a delayed input pulse p(t-
Td), where Td< TS, leads to an analytical equation for sampled output of
the integrators in non-ideal case as follows:

Qd
m(nTs) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1

(
∏m

j=1
kj

)

Im0,TS − Td (p(t)) n = 1

c1
∏m

j=1
kj

(
∑m

p=1
Ip0,TS (p(t))

×
((n − 1)TS − Td)m− p

(m − p)!
n > 1

(11)

Using (10) and (11), we can calculate the error at different nodes and
sampling instances:

Em(n) = Qm(nTs) − Qd
m(nTs) (12)

As mentioned in Section II, we initiate compensation for samples n >
1. Using (12), errors at the output of integrators 1 to 3 for n> 1 are given
by:

E1(n> 1) = 0 (13)

E2(n> 1) = c1k1k2I10,TS (p(t)) × Td (14)

E3(n>1)= c1k1k2k3
[

I20,TS (p(t))×Td+ I10,TS (p(t))(n − 1)TSTd − I10,TS (p(t))
T2d
2

]

(15)

According to (13), for n > 1, a delay less than TS has no effect on the
1st integrator output since the error is equal to zero, while (14) shows
that the delay leads to a constant error for 2nd integrator. Furthermore,
the second term in (15) indicates that error at the 3rd integrator output
increases linearly with time.

We will investigate this error after compensating 2nd integrator
output to prove our 2nd strategy mentioned in Section II. To begin our
compensation procedure, we aim to determine the compensating coef-
ficient c2 at 2nd integrator input. To preserve generality, we assume p2(t)
as the feedback pulse shape at 2nd integrator input. Integrating this
pulse multiplied by c2 over TS results in a constant value at the output of
2nd integrator, which should be equal to the offset error in (14),
Therefore, we have:

k2c2I10,TS (p2(t)) = E2(n > 1) = c1k1k2I10,TS (p1(t)) × Td

c2 = c1k1
I10,TS (p1(t))
I10,TS (p2(t))

× Td
(16)

Adding c2 affects the 3rd integrator output, or more generally, add-
ing any coefficient ci alters the subsequent integrators output. Therefore,
to account for the effect of compensating coefficients, relation (11) must
be modified as (17).

Qd
m(nTs) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m

i=1
ci
∏m

j=i
kjIm+1− i

0,TS − Td (pi(t)), n = 1

∑m− 1

i=1
ci
∏m

j=i
kj

×

(
∑m− i+1

p=1
Ip0,TS (pi(t))

((n − 1)Ts − Td)m− i− p+1

(m − i − p+ 1)!

)

, n > 1

(17)

Where to calculate the output of the m-th integrator, the effects of
coefficients c1 to cm-1 have been considered. Recalculation of (15) using
(17) and substitution of c2 from (16) results in:

The value of above equation does not vary over time, which serves as
the proof of our 2nd strategy that the compensation path at any inte-
grator input changes the increasing error of the subsequent integrator to
a constant offset, i.e. Em(n > 1) = Em(2). Therefore, cM can be calculated
as:

kmcmI10,TS (pm(t)) = Em(2)

cm =
Em(2)

kmI10,TS (pm(t))
(19)

where Em(2) is the result of substituting of (10) and (17) into (12), Eq.

E3(n> 1) = c1k1k2k3

[

I20,TS (p1(t))×Td + I10,TS (p1(t))
T2d
2
−
I10,TS (p1(t))
I10,TS (p2(t))

I20,TS (p2(t))Td

]

(18)
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(19) can be rewritten as (20).

Using relations (19) and (20), the coefficients c1 to cM can be
calculated in a progressive process. The Addition of these coefficients
corrects the output of chain for t > 2TS. The final step is determining the
fast loop coefficient, cM+1, such that it compensates the chain output
error at the instance t= TS. To do so, cM+1 must be equal to the difference
between chain outputs in the ideal case and ELD case at t = TS,
considering all preceding compensation coefficients, according to (21).

Substitution of the relations (10) and (17) into (21) results in (22). By
(20) and (22), all unknown parameters of Fig. 6(b) can be calculated.

cM+1 = QM(Ts) − Qd
M(Ts) (21)

cM+1 = c1
∏M

j=1
kjIM0,TS (p1(t)) −

∑M

i=1
ci
∏M

j=i
kjIM+1− i

0,Ts − Td (pi(t)) (22)

According to these equations, to calculate the coefficients, we only
need time information of feedback pulses. Therefore, we can compen-
sate the modulators in which the feedback pulse cannot be represented
in frequency domain (a case where traditional method is not applicable).
Additionally, the time information can be easily calculated considering
the non-idealities that affect the feedback pulse shape.

Another point of flexibility in this procedure is the possibility of
choosing different pulse shape for each feedback path. Furthermore, the
equations can be used to change the feedback pulse shape in a modu-
lator. This means that if there is an ideal modulator for which the co-
efficients are determined for a standard NRZ DAC, we can easily
calculate the coefficients of an equivalent modulator with a feedback
pulse shape different from the main modulator, simply by using the time
information of new pulses in (20).

In summary, the compensation procedure involves the following
steps, illustrated in Fig. 7:

1. Decomposition of the modulator’s loop filter to separate COIs, as
shown in Fig. 2.

2. Calculation of coefficients c1 to cM shown in Fig. 6 using (20) for the
1st COI.

3. Calculation of coefficient cM+1 shown in Fig. 6 using (22) for 1st COI.
4. Repeating steps 2 and 3 for all other COIs.
5. Combining the compensated COIs to obtain the modified filter,

shown in Fig. 5 using (1).

4. Extended ELD compensation

Digital correction methods, such as DEM, can cause more delays in
the loop, which destabilizes the modulator, particularly in high-speed
applications where Ts can be smaller than the DEM block delay.
Although the classic ELD compensation technique is a good way to

Fig. 7. Flowchart of the compensation procedure.
Fig. 8. (a) 1st integrator, and (b) 2nd integrator output in a 2nd order COI with
an input signal delayed more than one clock cycle.

cm =

(

c1
∏m− 1

j=1
kj

(
∑m

p=1
Ip0,TS (p1(t))

Tsm− p

(m − p)!

)

−
∑m− 1

i=1
ci
∏m− 1

j=i
kj
∑m− i+1

p=1
Ip0,TS (pi(t))

(Ts − Td)m− i− p+1

(m − i − p+ 1)!

)

×
1

I10,TS (pm(t))

(20)
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restore the SNR, it fails to compensate for the modulators thatTd >Ts.
Therefore, employing some methods capable of compensating for the
modulator with ELD exceeding one clock cycle is crucial. The method
introduced to compensate the ELDmore than one clock cycle in Fig. 1(c)
cannot retrieve SNR as it is in the classic compensation method. In this
section, we extend the analysis of the last section to propose a two-step
method that is as effective as the classic ELD compensation at retrieving
SNR and also compensating for delays longer than a clock cycle.

As mentioned in Section 3, cM+1 in Fig. 6(b) is responsible for cor-
recting the chain output error at instance t = Ts. Hence, the quantizer
output must be available in less than a clock cycle to compensate for
loop filter’s first sample.

Although the coefficients c1 to cM alter the calculation of cM+1, their
main purpose is the correction of the chain’s output for t ≥ 2TS.
Therefore, it seems they can be injected into the chain after a delay of
more than one clock cycle.

Now consider the 2nd order COI, regarding a delay of more than one
clock cycle at its input pulse. The output of integrators in this condition
is illustrated in Fig. 8. In this case, the outputs at sample n = 1 is
absolutely zero since there is no pulse at the chain’s input. For subse-
quent samples, the output behavior is similar to the case discussed in
Section 3. Again, we can compensate errors at t ≥ 3TS and t = 2TS by
injection of a delayed input pulse with appropriate gains to the 2nd
integrator input and chain’s output, respectively. Although the effect of
the delay can be fully compensated for samples n ≥ 2, it is inevitable to
have a path with a delay less than one cycle to create the first sample at
the chain output. This procedure results in a structure that can be
assumed to be a general case of the method proposed in [11] and is
shown in Fig. 9. Based on the aforementioned approach, to have a fully
compensated chain (equivalently a fully compensated modulator
without any degradation in performance) Td1 and Td2 must meet the
following conditions.

Td1 < TS
TS < Td1 + Td2 < 2TS

(23)

An important property in structure of Fig. 9 is that the output of the
fast loop is directly injected to the quantizer input (the point with the
highest immunity to noise), while the pulse of the outermost feedback to
the modulator input (the point at which errors directly appear at the
modulator output) by the slow path.

This property can be beneficial in high-resolution ΣΔM in which
DEM is used to compensate for DAC nonlinearity. The slow path in Fig. 9
can accommodate a more relaxed DEM in a way that the maximum

sampling rate of the modulator is limited only by quantizer-DAC delay.
This is in contrast to traditional structures in which the maximum rate
limit is determined by the total delay of quantizer, DAC, and DEM block.
However, to overcome the speed limit imposed by the quantizer and
considering the highest noise-shaping performance at the quantizer
input, in [11] the fast loop has been implemented by a sample and hold
circuit bypassing the quantizer. Additionally, [13] uses time information
available through interleaved channel coupling to realize the fast loop.
In the rest of this section, we will derive systematic equations to
calculate the compensation coefficients based on our intuitive approach.
Again, we just discuss compensating a general COI and final modulator
can be achieved by super-positioning of the compensated COIs.

Consider the chain in Fig. 10, where the conditions specified in (23)
are satisfied. Our objective is to determine c2 to cM, cM+1, and cM+2 such
that the chain’s output matches that of the ideal chain shown in Fig. 6(a)
at instances t> 2TS, t= 2TS, and t= TS, respectively. Once again, we can
compute the output values of integrators in the ideal case using (10).
However, for delays TS< Td< 2TS, we adjust (17) as in the relation (24).

Qd
m(nTs) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, n = 1

∑m

i=1
ci
∏m

j=i
kjIm+1− i

0,2TS − Td (pi(t)), n = 2

∑m− 1

i=1
ci
∏m

j=i
kj

×

(
∑m− i+1

p=1
Ip0,TS (pi(t))

((n − 1)Ts − Td)m− i− p+1

(m − i − p+ 1)!

)

, n > 2

(24)

Utilizing this equation, we can compute the compensation co-
efficients for setup depicted in Fig. 10. Since c2 to cM are responsible for
rectifying errors at samples n > 2, we have:

cm =

(

c1
∏m− 1

j=1
kj

(
∑m

p=1
Ip0,TS (p1(t))

(2TS)m− p

(m − p)!

)

−
∑m− 1

i=1
ci
∏m− 1

j=i
kj
∑m− i+1

p=1
Ip0,TS (pi(t))

(2TS − Td)m− i− p+1

(m − i − p+ 1)!

)

×
1

I10,TS (pm(t))

(25)

cm =
Em(3)

kmI10,TS (pm(t))
(26)

cM+1 = EM(2)

cM+1 = c1
∏M

j=1
kj

(
∑M

p=1
Ip0,TS (p1(t))

Tsm− p

(M − p)!

)

−
∑M

i=1
ci
∏M

j=i
kjIM+1− i

0,2Ts − Td (pi(t))

(27)

cM+2 = EM(1) = QM(TS)

cM+2 = c1

(
∏M

j=1
kj

)

IM0,TS (p1(t))
(28)

where Em(3) can be calculated using Eqs. (10), (12), and (24). After
substituting the result into (26), we obtain the relation (25) for calcu-
lating c2 to cM. Additionally, cM+1 and cM+2 are responsible for error
correction at samples n = 2 and n = 1, respectively as we have in (27)
and (28). Eqs. (25) to (28) comprehensively define the compensation
coefficients in Fig. 10. These equations hold true for TS < Td < 2TS.
Additionally, relation (28) highlights that Td does not influence the
calculation of cM+2 and it only needs to satisfy condition (23).

Fig. 9. Extended ELD compensation structure.

Fig. 10. Compensated COI for delay more than one clock cycle.
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In summary, the compensation procedure entails the following steps,
as illustrated in Fig. 11.

1. Decompose the modulator filter to separate COIs, as depicted in
Fig. 2.

2. Compute coefficients c1 to cM for 1st order COI shown in Fig. 10 using
relation (25).

3. Determine coefficient cM+1 for 1st order COI shown in Fig. 10 using
(27).

4. Calculate coefficient cM+2 for 1st order COI shown in Fig. 10 using
(28).

5. Repeat steps 2 to 4 for all other COIs.
6. Combine the compensated COIs to obtain the modified filter, as

illustrated in Fig. 9.

5. Simulation results

To validate the accuracy of the derived equations, both compensa-
tion schemes were applied to the loop filter of a typical modulator. The
ideal and compensated filters were then simulated in MATLAB/Simu-
link, and the output signals were compared. Throughout this section, TS
= 1 is assumed.

As an example, we consider a 3rd order modulator with the structure
depicted in Fig. 2(a). A 3rd-order modulator gives us a good balance
between complexity and generality. Analyzing a 3rd-order modulator
inherently covers the behavior of lower-order modulators. Higher-order
modulators can be viewed as combinations of the lower-order stages
following our step-by-step method.

In Fig. 2(a), k1 to k3 are equal to {0.43, 0.91, 1.55}. Simulation re-
sults of the ideal modulator in Simulink exhibit a SNR of 86.22 dB for a
− 3 dBFS input sine wave is depicted in Fig. 12. By decomposing the loop
filter into COIs as shown in Fig. 2(b) and compensating each COI using
Eqs. (20) and (22), considering Td = 0.75, the results are:

c1i = {1,1.1625}

c2i = {1,0.6825,0.3967}

c3i = {1,0.3225,0.1101,0.0426}

By summing these parameters based on (1), we can obtain the
compensation coefficients for Fig. 5 as follows:

kci = {1,1.3225,1.7926, 1.6018}

Fig. 13 illustrates the loop filter impulse response in four steps, where
the unity gain of feedback paths is replaced by kc1 to kc4 sequentially. As
depicted in Fig. 13(b), replacing kc2 transforms the increasing error of
the third integrator into a constant offset. Finally, in the last step, the
output of the compensated filter precisely matches the ideal filter at the
sampling times, as demonstrated in Fig. 13(d).

Now, let us consider the selected modulator to be compensated with
the scheme depicted in Fig. 9 for Td1+ Td2= 1.5. By utilizing Eqs. (25) to
(28), we obtain:

c1i = {1,0.775,1.55}

c2i = {1,1.365,0.8816,0.7053}

c3i = {1,0.645,0.4402,0.2401,0.1011}

kci = {1,1.645,2.8052,1.8967, 2.3564}

Once more, the compensating paths are incorporated into the loop
filter sequentially, and the output signal is visualized in Fig. 14. The
precise matching of ideal and compensated filters output at the sampling
instances serves to validate the accuracy of the proposed equations.
Finally, the systematic simulated spectra of both the ideal and the
compensated modulators are depicted in Fig. 12. SNDR value in the
compensated modulator is close to the ideal modulator with an error of
0.24 dB This demonstrates that the SNDR value can be retrieved after
compensating 1.5TS delay without increasing the OSR or the order of the
modulator.

6. Discussions

Considering the general model of the 3rd order modulator, depicted
in Fig. 15(a) with a feedback structure, in the ideal case, kc2 and kc3 are
set to unity, while kc4 and kc5 are zero. However, as the delay increases,
the value of kc2 and kc3 deviate from unity. In the case of traditional ELD
compensation, where the ELD is less than one clock period, kc5 becomes
non-zero value. For extended compensation case, both kc4 and kc5 takes a
non-zero value. Table 1 lists the coefficients for five different cases,
considering a modulator with k1 to k3 equal to {0.43, 0.91, 1.55}, and TS

Fig. 11. Flowchart of the compensation procedure for extended ELD
compensation.
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Fig. 12. Simulated spectrum of selected 3rd-order modulator using Simulink with − 3 dBFS input signal for both ideal case and ELD compensated.

Fig. 13. Loop filter output (a) before compensation, (b) after adding 2nd integrator input, (c) after adding 3rd integrator input, and (d) after adding fast path.
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= 1.
As previously discussed, the primary purpose of the investigated

compensation techniques is to maintain the NTF performance identical
to that of the ideal case. The STF of a CT ΣΔM can be calculated by the
multiplying the feed-forward transfer function from the input of the
modulator to the quantizer by the NTF. By substituting s = j2πf in the
former and z = exp(j2πf/fS) in the latter components of the STF, its
magnitude can be plotted against frequency. For the modulator shown in
Fig. 15(a), the STF is expressed as in (29).

STF(f) =
k1k2k3
s3

NTF(z)
⃒
⃒
⃒
⃒ s = j2πf

z = exp
(
j2πf

/
fS
)

(29)

Since the feed-forward transfer function is independent of kci, and the
NTF is expected to remain identical in both ideal and compensated
modulators, the compensation procedure does not impact the STF of a
ΣΔ modulator with the feedback structure.

The modulator depicted in Fig. 15(a) can be recognized as a feed-
forward structure, as illustrated in Fig. 15(b), while preserving the
same NTF. This preservation can be validated by computing the open-

Fig. 14. Loop filter output (a) before compensation, (b) after adding 2nd integrator input, (c) after adding 3rd integrator input, (d) after adding slow path (e) after
adding fast path.
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loop transfer function from the quantizer output to its input in both
configurations. In this case, the STF can be approximated as:

STF(f) =
(
kc3k3
s

+
kc2k2k3

s2
+
k1k2k3
s3

)

× NTF(z)
⃒
⃒
⃒
⃒ s = j2πf

z = exp
(
j2πf

/
fS
)

(30)

The magnitude of the STF in the feed-forward modulator is influ-
enced by the values of kc2 and kc3. To explore the variations in the STF
within a feed-forward configuration, the corresponding STFs for the

scenarios outlined in Table 1 have been plotted as shown in Fig. 16. This
figure also includes the STF of feedback structure for comparison.
Notably, the STF of the feed-forward modulator exhibit a peaking in
magnitude, that increases in alignment with ELD.

7. Conclusions

Most existing studies evaluate their compensation method on spe-
cific modulators tailored to certain applications. This variability poses a
challenge in comparing different compensation techniques. Neverthe-
less, we try to highlight the strengths and weaknesses of available
methods.

In this paper, we have investigated the traditional ELD compensation
technique in time domain to propose a systematic procedure for calcu-
lating the loop filter parameters. Traditional calculation methods based
on adding fast path around quantizer can theoretically retrieve SNR
value properly for delays less than a clock cycle. Prior works mostly rely
on the frequency domain representation of modulator and the feedback
DAC pulse shape [1,3,22,30,31]. As a result, these methods are only
applicable to certain structures, and the complexity of calculations in-
creases with variations in impulse response of the feedback DAC.

The limitations of frequency domain methods and the necessity to
adjust the loop filter coefficients have led to increased interest in
alternative approaches such as adaptive solution [19,20] and
time-domain methods [21–31]. While high-order ELD compensation
using an adaptive scheme [20] offers potential advantageous, it also
increases complexity. On the other hand, time-domain methods are
generally less complex and can be easily used for systematic analysis.
Additionally, [31] demonstrates that for DAC pulses with the identical
area and delay, there is no requirement to recalibrate the loop filter
coefficients. However, it may encounter limitations when dealing with
pulses exhibiting discontinuities like RZ. Furthermore, it only can
compensate for one clock cycle. Additionally, a Bitwise approach like
[25,26], relies on traditional methods or digital domain compensation
methods, which could not be applicable to certain architectures or
modulators with different types of quantizers.

The equations derived in this paper offer more versatility compared
to previous methods, as they are applicable to any arbitrary feedback
pulse shape. All that is needed is the feedback pulse time information,
allowing for consideration of the non-idealities affecting the pulse
shape. The proposed procedure enables the choice of different pulse
shapes for each feedback path and facilitates the alteration of the
feedback pulse shape in a modulator. For instance, if there is an ideal
modulator designed for a standard NRZ DAC, the coefficients can be
easily recalculated for an equivalent modulator with a different feed-
back pulse shape. Subsequently, we extended our intuitive approach to
structures accommodating more than one clock cycle of ELD, a capa-
bility not achievable with traditional ELD compensation technique
shown in Fig. 1(b). This feature has been utilized in prior works such as
[11–14], albeit without any systematic design procedure or proper
retrieval of in-band SNR similar to traditional method. Furthermore,
designing a fast-settling sample-and-hold circuit for high-speed appli-
cations would be power-intensive, as illustrated in Fig. 1(c).

Moreover, our proposed procedure is highly systematic and suitable
for integration with existing software design tools. In comparison to
optimization-based approach like [23], our method offers greater flex-
ibility in feedback pulse selection even for custom DAC pulses or feed-
backs with different pulse shapes. Our approach is faster, and requires
less hardware resources. Finally, there is no limitation on the order and
architecture of the modulator.
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