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A new linearisation technique for active mixers is introduced to
enhance the third-order input intercept point (IIP3). This technique is
based on the cancellation of the third-order Volterra kernel in the
output current of the transconductance stage by using the interaction
between two nonlinear systems. In this scheme, a nonlinear circuit is
employed prior to the conventional mixer to improve the total IIP3
by adjusting its second-order Volterra kernel magnitude and phase.
Moreover, the added circuit increases the conversion gain of the
mixer. The simulation results show that both the IIP3 and the conver-
sion gain simultaneously improve by 13 and 11.4 dB, respectively,
compared with the conventional active mixer.
Introduction: Linearity and noise figure are the most important para-
meters in the design of radio frequency (RF) receivers. Recently, the
CMOS technology scaling has led to a better noise figure, but with
degraded linearity performance and intrinsic DC gain in the MOS tran-
sistors [1]. Moreover, since the technology scaling decreases the power
supply voltage, the voltage headroom in the load stage is reduced, result-
ing in the decreased maximum gain of the designed circuit. Mixers are
one of the important blocks in the RF receivers due to their frequency
translation capability. The linearity of the mixers has a considerable
influence on the total linearity of an RF receiver. It is usually character-
ised with second-order input intercept point (IIP2) and IIP3 parameters
among which the IIP3 has a great significance in the design of the
CMOS RF receivers. Several techniques have been introduced to
enhance the IIP3 [1–3]. An auxiliary transistor, to form a multiple
gated transistor, is employed in [1, 2] to cancel the third derivative of
the main transistor’s drain current in the transconductance stage. In
[3], the third-order distortion of the transconductance stage has been
cancelled by using the second-harmonic injection technique.
However, due to an interaction term caused by the feedback, the IIP3
improvement is limited in [1, 2] and also the method in [3] is not applic-
able in low-voltage designs because of needing an extra headroom
voltage in its tail transistor. In this Letter, a new IIP3 improvement tech-
nique based on the interaction between two nonlinear is presented which
also improves the conversion gain significantly.

Proposed IIP3 enhancement technique: The general block diagram of
the proposed linearisation technique is shown in Fig. 1 where two non-
linear subsystems named A and B are utilised. The Volterra kernels of
the total system output current (Iout,B) can be defined as follows:

Iout,B = H1(s1)Vin + H2(s1, s2)V
2
in + H3(s1, s2, s3)V

3
in + · · · (1)

where H1, H2 and H3 are the first-, second- and third-order Volterra
kernels of the system, respectively. The first- and the third-order kernels
of the cascaded system can be obtained according to the kernels of the
subsystems A and B as [4]

H1(s1) = A1(s1)B1(s1) (2)

H3(s1, s2, s3) = B3(s1, s2, s3)A1(s1)A1(s2)A1(s3)

+ B1(s1 + s2 + s3)A3(s1, s2, s3)

+ 2

3
B2(s1, s2 + s3)A1(s1)A2(s2, s3)
[

+ B2(s2, s1 + s3)A1(s2)A2(s1, s3)

+B2(s3, s1 + s2)A1(s3)A2(s1, s2)
]

(3)

where A1, A2, A3 and B1, B2, B3 are the kernels of the subsystems A and
B, respectively. Since the first-order kernel of a system is the same as its
transfer function (TF), H1 is obtained from the system TF. As is seen, if
|A1| > 1, the gain of the system will be increased. In (3), the first and the
second terms of H3 originate from the third-order nonlinearities of the
subsystems A and B and the terms in the brackets originate from the
interaction between the two nonlinear subsystems. Assuming A1, B3 <
0 and A3, B1 > 0, if B2A2 < 0 the third-order kernel in (3) could be
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cancelled, resulting in an improvement in the total system AIIP3 according to
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Fig. 1 Block diagram (system level) of proposed technique

In practice, producing the second-order nonlinearity and controlling
its magnitude and phase is straightforward. As a result, it is easy to
improve the IIP3 of a system with the second-order nonlinearity gener-
ation. To realise this method, a nonlinear circuit is needed to change the
magnitude and the phase of its second-order kernel without affecting the
other kernels. In this work, in addition to the main path, a separate path
from the input to the output in subsystem A is designed with only
even-order nonlinear signals. By using this extra path, the magnitude
and the phase of the second-order kernel can be changed without any
effect on the first- and the third-order kernels.

Fig. 2 shows the proposed mixer based on this linearisation method.
In this Figure,M1a –M6a with Rd, Ld and Cd,M1−M2,M3−M6 and the
RC network (Rl and Cl) at the output are the added circuit (subsystem A),
the transconductance stage of the conventional mixer (subsystem B), the
switching stage and the IF stage, respectively. Also, all the parasitic
capacitances at the output of subsystem A are modelled by CP. The tran-
sistors M1a, M2a, M5a and M6a along with the RLC network (Rd, Ld and
Cd) make an auxiliary path for the even-order nonlinear signals. In this
path,M1a andM2a convert the input signal voltage to a nonlinear current
and since the drains of these transistors are connected together, their
even-order nonlinear terms are summed up and the odd-order terms
are cancelled because of their opposite signs. This current then
appears at the output as a voltage while flowing from the RLC
network and being amplified by M5a and M6a. Here, only the
second-order nonlinear term of this voltage is considered and the
other terms are neglected. Moreover, the second-order terms appear at
the output through the main path, M3a and M4a. Unlike the auxiliary
path that only produces the second-order terms, the main path (M3a

and M4a) also produces the first- and the third-order terms. A1, A2 and
A3, respectively, being the kernels of the added circuit, are obtained as

A1(v1) = − gm, 3aRout,A

1+ jv1Rout,ACp

(5)

A2(+v1, +v2) =
(1/2!)g′m, 3aRout,A

1+ j(Dv)Rout,ACp

− j(Dv)RdLd × 2(1/2!)g′m, 1a × gm, 5aRout,A

Rd + j(Dv)Ld − (Dv)2RdLdCd

( )
1+ j(Dv)Rout,ACp

( ) (6)

A3(+v1, +v1, +v2) = − (1/3!)g′′m, 3aRout,A

1+ j+v1 + v1 + v2( )Rout,ACp

(7)

where Dv = +v1 + v2 and Rout,A = rds, 3a||rds, 5a.
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Fig. 2 Proposed mixer

In the above-mentioned equations, gm, 3a, g′m,3a and g′′m, 3a are the
first-, the second- and the third-order derivatives of the M3a drain
current, respectively. In (5), the first-order kernel is calculated that is
the same as the voltage TF of subsystem A. In this equation, the
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magnitude of A1 is >1, and consequently, the conversion gain will be
increased by 20 × log|A1|. Also, relation (7) shows the third-order
kernel. As expected, both these kernels have been formed by only
one term due to the transistors in the main path (M3a and M4a),
whereas the second-order kernel in (6) consists of two terms. The
first term originates from the main path and the second term from the
auxiliary path. Here, the second term is designed so that it has the
most important role in A2. As is seen, the magnitude and the phase
of this term change according to the values of the RLC network com-
ponents. Therefore, according to (3), H3 can be cancelled resulting in
an increased AIIP3 in (4). Also, the kernels of subsystem B are obtained
as follows:

B1(v1) = gm, 1, B2 +v1, +v2( ) = 1

2!
g′m, 1,

B3 +v1, +v1, +v2( ) = 1

3!
g′′m, 1

(8)
Simulation results: To evaluate the effectiveness of the proposed tech-
nique, the mixer shown in Fig. 2 has been simulated by using a 90 nm
CMOS process with Spectre-RF along with the conventional active
mixer. It was designed for a 2.4 GHz input signal frequency. A local
oscillator with +3.5 dBm power drives the switching transistors. The
IIP3 simulations have been conducted by applying a two-tone test
with a 5 MHz spacing. The IIP3 results of the proposed and the conven-
tional mixers are illustrated in Fig. 3. This Figure indicates that the pro-
posed mixer has a 17.1 dBm IIP3 which is an improvement by about
13 dB. The simulated conversion gain has been also improved consider-
ably and it is 22.1 dB as shown in Fig. 4. Table 1 summarises the simu-
lation results and compares the proposed mixer with several
state-of-the-art linearised mixers [3, 5, 6] with the following
figure-of-merit (FoM) [7]:

FoM = 10 log
10CG(dB)/20 × 10(IIP3(dBm)−10)/20

10NF(dB)/10 × P(mW)× VDD(V )

( )
(9)
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Fig. 3 Simulated IIP3 of proposed and conventional mixers
As is seen, the proposed mixer achieves a high IIP3 and results in an
outstanding FoM verifying the usefulness of the proposed linearisation
technique as well as the conversion gain improvement.
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Fig. 4 Conversion gain of conventional and proposed mixers

Table 1: Simulation results summary
Parameters
16th Januar
Proposed mixer
y 2014 V
Conventional
mixer
ol. 50 No
[3]
. 2
[5]a
pp. 7
[6]a
Frequency (GHz)
 2.4
 2.4
 2.1
 1–3
 0.3–12

IIP3 (dBm)
 17.1
 4.1
 15
 10
 −0.8
Conversion gain (dB)
 22.1
 10.7
 15
 9.5
 8.8
Noise figure (dB)
 13.2
 12.6
 14
 16.5
 4.8
Power supply (V)
 1
 1
 1.8
 1.5
 0.9
Power (mW)
 4
 1.7
 8
 5.4
 24
Process (nm)
 90
 90
 180
 180
 130
FoM
 −4.6
 −12.5
 −15.6
 −20.8
 −19.1

aMeasurement result

Conclusion: Based on the interaction between the two nonlinear
systems, a new technique is proposed to improve the value of the IIP3
as well as the conversion gain in the active mixers. The proposed
method can also be utilised in CMOS low-noise amplifiers.
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