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ABSTRACT 

 

This paper presents a new compensation method for fully 

differential two-stage CMOS operational 

transconductance amplifiers (OTAs). It employs a hybrid 

cascode compensation scheme, merged Ahuja and 

improved Ahuja style compensations, for fast settling. A 

design procedure for minimum settling time of the 

proposed compensation technique for a two-stage class 

A/AB OTA is described. To demonstrate the usefulness of 

it, three design examples are considered. 

 

1.  INTRODUCTION 

 

Design of high performance analog circuits is becoming 

increasingly challenging with the persistent trend toward 

reduced supply voltages. The main bottleneck in an 

analog circuit is the operational amplifier. The realization 

of a CMOS operational amplifier that combines high dc 

gain with high unity gain bandwidth has been a difficult 

problem especially in low voltage circuits. The high dc 

gain requirement leads to multistage designs or cascoding 

of transistors with long channel devices biased at low 

current levels, whereas the high unity gain frequency 

requirement calls for a single stage design with short 

channel devices biased at high bias current levels. 

Cascoding is a well-known means to enhance the dc gain 

of an amplifier without degrading the high frequency 

performance. But cascoding is not possible in the low 

voltage circuits. Another technique to achieve both high 

DC gain and unity gain bandwidth is to employ gain 

boosting [1], [2]. But in this technique at least four 

transistors should be cascoded at the output, which 

decreases the output voltage swing.  In the other hand, a 

two-stage OTA can be used to satisfy the high dc gain 

requirement for high-speed applications. 

Design of two-stage opamps needs some forms of 

compensation to maintain the stability. It has been shown 

that the cascode compensation scheme yields a higher 

amplifier bandwidth compared to the conventional miller 

compensation [3]. In this paper a hybrid cascode 

compensation technique is proposed which results in fast 

settling in two-stage opamps. 

In section (2) a two-stage class A/AB OTA structure 

with new compensation method is considered and 

analyzed and a set of system parameters is also obtained. 

Design procedure for this OTA with its proposed 

compensation method is described in section (3). Section 

(4) presents simulation results. Finally, conclusions are 

summarized in section (5). 

 

2.  PROPOSED COMPENSATION TECHNIQUE 

 

Fig. 1 shows a two-stage class A/AB OTA structure [4]. 

The first stage is a folded cascode amplifier with PMOS 

input transistors. The second stage is a class AB amplifier 

with active current mirrors. Due to class AB operation of 

this stage, slew limiting only occurs in the first stage 

which results in low power consumption.  
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Fig. 1: A two-stage class A/AB OTA with proposed 

compensation method. 
 

Frequency compensation is needed to maintain stability 

in a two-stage amplifier. The standard miller 

compensation has a pole splitting effect, which moves one 

pole to a lower frequency and the other to a higher 

frequency [5]. The two-stage amplifier shown in Fig. 1 

employs the hybrid cascode compensation scheme, 

merged Ahuja [3] and improved Ahuja style [6] 

compensation methods, which creates two real poles, two 

complex poles at a higher frequency, and three zeros. This 

scheme of compensation yields a higher amplifier 

bandwidth compared to the standard miller and 

conventional cascode compensation techniques at the cost 

of more complex design procedure for the settling 

behavior of the amplifier. Since the proposed 

compensation scheme creates an amplifier with four 
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closed-loop poles and three zeros, the design equations 

become significantly more complicated than those of a 

single-stage or conventional miller and cascode 

compensated two-stage amplifier. This implies that for 

practical designs some form of computer optimization 

constrained by the tradeoffs in the design equations will 

be necessary. 
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Fig. 2:  Closed-loop small-signal equivalent circuit. 
 

Fig. 2 shows the closed-loop small-signal equivalent 

circuit for pole and zero analysis of the proposed OTA 

shown in Fig. 1, where C1, C2, C3, and CL represent the 

parasitic capacitances of nodes N1, N2, N3, and the output 

node of the circuit shown in Fig. 1, respectively.  f is the 

feedback factor. To simplify the analysis, device output 
resistances are assumed to be infinite. It should be noted 

that the effect of finite device resistance is to move the 

amplifier poles slightly to the left, which will slightly 

increase the bandwidth of the amplifier [7]. The node 

equations of this circuit are as follows: 
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The transfer function will be as follows: 
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In order to verify the usefulness of the proposed 

compensation technique, the settling time of Ahuja style, 

improved Ahuja style, and the proposed compensation 

techniques are shown as a function of the total 

compensation capacitance in Fig. 3. In these simulations 

the small signal parameters shown in Table (1) have been 

used. The proposed compensation technique can give a 

smaller settling time compared to the other alternatives. 
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Fig. 3: Settling time with different compensation techniques. 
 

Table (1): Small-signal parameters. 
 

Parameter Value Parameter Value 

gm1 4 mA/V C1 [pF] 0.206 

gm2 4.7 mA/V C2 [pF] 0.627 

gm3 4.2 mA/V C3 [pF] 0.267 

gm4 5.7 mA/V CL [pF] 4 

gm5 7.4 mA/V f 0.8 

 

 

3. DESIGN PROCEDURE 
 

In order to investigate the settling behavior of the 

proposed compensation technique a standard fourth order 

system with the following transfer function is considered 
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where 
n

a αζω= , 
n

b βζω= , 
n

zc ζω= and npz γζω= . 

There are six system parameters, α, β, γ, ω
n
, ζ and z in 

the transfer function. ω
n
 and ζ

 
are called natural frequency 

and damping factor, respectively. Fig. 4 shows the 

description of these six system parameters by the location 

of poles and zeros of the proposed compensation 

technique in a practical implementation. 
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Fig. 4:  Closed-loop pole and zero locations. 
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In switched-capacitor circuits, the step response 

determines the amplifier settling performance in the time 

domain. It can be shown that the step response of the 
above-mentioned fourth order system is as follows: 
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Where Acl is the closed-loop gain and 
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In the calculation of the step response it is assumed that 

γ goes to infinity since in the practical cases the right and 

left-plane zp zero pair in the closed loop transfer function 

will be at much higher frequencies than the poles. 

The settling error as defined 
)(

)()(

∞

−∞

=

s

tss
s

s
ε is 

obtained by: 
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This equation is very complex to intuitively explain how 

to choose the system parameters to optimize the settling 

error. Therefore, numerical calculations are used. Fig. 5 

shows the settling error of the proposed compensation 

technique for different values of the system parameters. 

The obtained system parameters for –120 dB settling error 

are 95.0=α , 9.0=ζ , 9.0=z , 95.0=β  and 17=
sn
tω . 

The obtained system parameters for a specific settling 

error in a defined time can be used to determine the 

device parameters with the following equations: 
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Fig. 5: Settling errors as a function of 
sn
tω  for different values 

of (a) ζ, (b) α, (c) z, and (d) β. 

In these equations, the system parameters, α, β, z, ζ, 

and ωn are known. The load and compensation 

capacitances, CL, Ca, and Cs are determined due to circuit 

noise considerations. The parasitic capacitances, C1, C2, 

and C3 are related to the device sizes. Also all of device 

transconductances can be expressed by transistor sizes. 

So, these equations can be solved to determine the device 

sizes using numerical calculations. However, these 

equations are very complex to solve. In order to achieve a 

coarse design of the proposed opamp, some 

approximations are considered to simplify the solution of 

the above-mentioned equations and also give an insight to 

them.  In equations (4-7) the parasitic capacitances, C1, 

C2, and C3 are assumed to be much less than the other 

capacitances. In this case, equations (17-21) reduce to the 

following relations: 
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In these equations, the transconductance of transistors 

M1, M2, M3, and M4,5 and the parasitic capacitance of 

node N2, C2 are unknown and can be obtained by solving 

them. Then one can run circuit level simulations to fine 

the obtained gate dimensions from system level 

calculations. 

 

4. SIMULATION RESULTS 

 

In order to demonstrate the usefulness of the proposed 

compensation technique, three different design examples 

with Ahuja style, improved Ahuja style, and the proposed 

compensation techniques were considered in the circuit 

level. At first, the system parameters of these design 

examples were obtained using their settling error 

equations with numerical calculations. Then, their circuits 

were simulated in a 0.25-µm CMOS technology with 

HSPICE. In these simulations, the OTAs were designed 

for a fully differential switched-capacitor integrator where 

sampling, integrating and load capacitances are 2.5pF, 

10pF and 2pF, respectively. The bootstrapped switches 

proposed in [8] have been used in these designs. In Fig. 6 

the settling behavior of the proposed OTA with three 

different compensation methods are shown. Simulation 

results are given in Table (2). 

 

5. CONCLUSIONS 

 

In this paper a new compensation technique for two-stage 

CMOS OTAs has been proposed. It employs merged 

cascode compensation technique, which results in fast 
settling compared to conventional miller, Ahuja style, and 

improved Ahuja style compensation techniques at the cost 

of more complex design procedure. A design procedure is 

also considered for the proposed OTA. 
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Fig. 6:  Settling simulation results. 

 

Table (2): Simulation results. 

Parameter Ahuja 
Improved 

Ahuja 

Proposed 

method 

Power supply voltage 1.5-V 1.5-V 1.5-V 

DC gain [dB] 80.3 79 80 

Unity gain bandwidth  

[MHz] 
137 151 167 

Phase margin [degree] 75.5 89 73.5 

Compensation cap. 3 pF 3 pF 3 pF 

Load capacitance 4 pF 4 pF 4 pF 

Settling time (0.01%) 10.1 ns 12.4 ns 7.1 ns 

Output swing [Vpp] 1.13 1.13 1.13 

Input referred thermal 

noise [V2/Hz] 
1.6×10-16 1.5×10-16 1.2×10-16 

Power consumption 8.9 mW 8.9 mW 8.9 mW 
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