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ABSTRACT 

In this paper, a modified analytic approach to the calculation of magnetic field in a slot-less, two-rotor 
axial-flux permanent magnet machine is presented. The analytic-modelling is based on calculation of scalar 
and vector magnetic potentials which are produced by the armature windings and the magnets. The magnet 
and the armature windings are modelled by a magnetization vector and a two-dimensional current sheet, 
respectively. The effects of the armature reaction and the harmonics of field are also considered. The 
simulation of magnetic field by the analytic model is compared with that of a two-dimensional finite element 
analysis. The proposed analytic model predicts the magnetic field within 5% compared to the finite element 
method. Ultimately, by using the analytic model in a genetic algorithm method, which is a known method in 
optimization, an optimum design of an axial-flux permanent magnet machine is presented. 
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SYMBOLS 

A  Vector potential 
'
sa  Specific electrical loading 

za  Cross section area of wire 
B  Flux density 
B  Specific magnetic loading 

crB  Flux density in rotor core 

csB  Flux density in stator core 

gB  Flux density in air gap 

gD  Mean diameter of stator 

iD  Inner diameter of stator core 

oD  Outer diameter of stator core 

tD  Outer diameter of stator 
f  Frequency 
g  Air gap length (magnet to the winding) 

H  Magnetic field intensity 

sJ  Current density ( 2/ mmA ) 

cuK  Copper space factor 

crL   Axial length of rotor core 

csL   Axial length of stator core 

eL   Axial length of machine 

rL   Axial length of rotor 

sL   Axial length of stator 

pml   Axial length of magnets 

M   Magnetization vector of a magnet 
eP   Eddy current losses in conductors 

eddP Eddy current losses in cores 

hP   Hysteresis losses 

2RIP Copper losses in stator windings 

p   Number of poles 

iR   Inner radius of stator core 
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mR   Mean radius of stator core 

oR   Outer radius of stator core 

eT   Electromagnetic torque 

cuiW Winding thickness at inner diameter 

cuoW Winding thickness at outer diameter 

0x   Position of a magnet pole with respect to a 
winding 

          pole 
1Y  Winding thickness at mean radius in analytic 

model 
2Y  The sum of 1Y  and gL  in analytic model 

3Y  The sum of 1Y  , 2Y  and gL  in analytic model 

α  Ratio of pole-arc to pole-pitch 
η      Efficiency 
λ  Pole-pitch 

dλ  Ratio of inner diameter to outer diameter of stator 

0µ  Permeability of free space 

recµ Magnetic recoil permeability 

mϕ  Scalar potential 

2mϕ Scalar potential in air gap region 

3mϕ Scalar potential in magnet region 

mχ  Magnetic sensitivity 

mω  Mechanical angular speed 

1.  INTRODUCTION 

In general, an axial-flux machine comprises of at least 
one rotor disc carrying either a slot-less or slotted 
winding. The stator may be magnetic or non-magnetic 
depending on the machine topology. Based on these 
concepts, a large number of axial-flux machine topologies 
are possible including single-sided, double-sided or 
multistage design [1]. This paper is focused on the slot-
less stator, two-rotor axial-flux permanent magnet 
machine with North-pole to North-pole (NN) structure. 

The axial-flux machines have been modelled by 
several researchers [1-7]. In one of the latest researches, 
Bumby  et al. [1] have represented the armature windings 
by a current sheet close to the iron surface of stator. Here, 
in this article, the authors have considered the current to 
be distributed in the whole cross section area of the 
winding, which yields more accuracy in modelling. 

Looking inwards in the radial direction, the structure of 
the machine can be seen as in Figure 1. 

 

 
Figure 1: 2-D structure of an axial-flux permanent magnet   
machine. 

The Gramme winding [6] is used around the stator in 
the air gap between the rotor and stator, and it is assumed 
that: 
• Iron cores are infinitely permeable, 
• The magnetization vector of permanent magnets 

(PM) is constant, 
• There is no free space between windings of different 

phases, and  
• With no loss of generality, the space-factor of 

winding is set to one. 
These assumptions will be implemented to obtain the 

magnetic field equations in the machine. Next, the 
analytical model is obtained by applying proper boundary 
conditions and solving these equations in the proposed 
structure of the machine. Finally, the model is used to 
design and to calculate the torque and the efficiency of the 
machine. To achieve more accuracy, the harmonic 
components of the field are considered too. Based on the 
accurate model, the machine is designed and is optimized 
by a Genetic Algorithm (GA) method. 

2.  THE PROPOSED ANALYTICAL MODEL 

A.  Modelling of Magnets 
Due to the symmetry, the analysis can be done on half 

of the machine as shown in Figure 2, where the x and y-
coordinates represent the circumferential and the axial 
directions, respectively. The model assumes the radial 
direction to be infinite.  

 
Figure 2: Simplified 2-D structure of an axial-flux permanent 
magnet disc machine for magnetic field computation. 

In modelling axial-flux machines, finite element 
method can be used. However, this method in an iterative 
optimization algorithm is time consuming if not difficult. 
Thus, in this paper an analytical model for axial-flux 
machines is developed and implemented. As it is shown in 
Figures 2 and 3, the magnetization distribution of the 
magnet array may be expressed by Fourier's expansion as 
follows: 
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Figure 3: Magnetization distribution of the magnet array. 
 

B.  Armature Windings 
The three-phase stator windings are shown in Figures 2 

and 4. Supposing that 0j  is the surface current density in 
each phase, the current density distribution in armature 
windings can be written as in the following: 
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Figure 4: Current density distribution in the armature windings. 
 

This equation is a new form to represent the current 
density distribution of armature windings, which has been 
implemented in the analytical modelling for the first time 
by the authors. 

C.  Magnetic Field 
The governing equations of the magnetic field are 

given by the following Maxwell’s equations: 

(3) JH
rr

=×∇  

(4) 0=⋅∇ B
r

 
The magnetization vector of permanent magnets is 

considered to be constant and thus, 0=⋅∇ M
v

 
and 0=×∇ M

v
. If one recalls that 0=⋅∇ A

v
, the Laplace 

and Poisson equations can be derived from (3) and (4) as 
in the following in regions 1, 2 and 3: 

(5) regions 2, 3 02 =∇ mϕ  

(6) region 1 JA o
rr

µ−=∇2
 

where, regions 1, 2, and 3 are the stator winding, the air-
gap, and the magnets, respectively. 

Solving the Laplace and Poisson equations, the flux 

density can be expressed in each region as follows: 

(7) region 1 AB
rr

×∇=  

(8) region 2 moB ϕµ ∇−=
r

 

(9) region 3 MB omo
rr

µϕµ +∇−=  

D.  Calculation of Magnetic Field 
Assuming infinitely permeable iron cores, the 

tangential component of magnetic field intensity is 
negligible. Therefore, the boundary conditions are as in 
the following: 
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Other boundary conditions are: 
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The following expressions are obtained for vector and 
scalar magnetic potentials, where the subscript denotes the 
number of region, and y-coordinate represents the axial 
direction, respectively. 
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3.  THE RESULTS OF THE MODELLING 

A.  Analytic Model 
The parameters which are used in the analysis are 

summarized in Table 1[1]. Figure 5 shows the air-gap 
magnetic flux density for no-load and full-load 
conditions.  One can deduce from this Figure that the 
armature reaction changes the field in x-coordinate 
direction, but its effect is small. 

TABLE 1 
 MACHINE PARAMETERS [1] 

Number of 
poles per 
disc 

16 Magnet width in 
mean radius 

41 mm 

Turns per 
armature 
coil 

4 Pole pitch 62 mm 

Magnet 
material 

Nd-
Fe-B 

Thickness of 
winding 

3 mm 

remB  1.2  T Length of Air-gap 5 mm 

recµ  1.05 Thickness of rotor 
yoke 

10 mm 

Output 
power 

40 kW Stator yoke 
thickness 

28.4 
mm 

Magnet 
thickness 

6 mm Mean diameter 316 mm 
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Figure 5: Magnetic flux density for no-load and full-load   
conditions in region 2 using analytic method. 

The magnets are mounted on the rotor and the machine 
has natural ventilation, so one can use relatively high 
current densities. Here, the current density is assumed 

2/5.6 mmA  and also,  2/λ=ox . 

B.  FEM 
The magnetic flux lines and the flux density 

distribution for no-load condition are depicted in Figures 
6 and 7, respectively. 

 
Figure 6: The magnetic flux lines for the no-load condition 
(FEM). 

 
Figure 7:  The flux density distribution for the no-load condition 
(FEM). 

 The magnetic flux density (at no load) in regions 2 
and 3 are compared with each other and also with FEM in 
Figure 8. The results demonstrate excellent agreement 
between the proposed analytic and the finite element 
methods with a maximum discrepancy of less than 5%. 

Figures 9 (a) and (b) which show the plot of the 
variation of vector potential and axial flux density in the 
radial direction across the surface of the iron stator core 
for the 40 kW generator, have been taken from [1]. The 
flux density plots have been obtained using the analytic 
expressions and 2-D and 3-D finite element analysis 
(FEA), whereas the analytic and 2-D FEA have been used 
for the vector potential. 
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Figure 8: The magnetic flux density computed with analytic and 
finite element methods in:   a) region 2,    b) region 3. 

By the comparison of Figure 8 with Figure 9, one can 
deduce that the magnetic flux density computed with the 
proposed analytic method resembles the results presented 
in [1]. As it was written before, the proposed approach is 
also more accurate. 

B
y(

T
)
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Figure 9: The variation of vector potential and axial flux density 
with radius [1]. 

4.  OPTIMAL DESIGN 

The genetic algorithm (GA), one of the global 
optimization methods, is well known as a fine method to 
optimize the design of electrical machines [8-12]. Here, 
the authors implemented GA to optimally design an axial-
flux machine. 

A.  The Problem Formulation 
This section presents the approach to determine the 

optimum dimensions of the machine. The objective 
function (OF) can be considered as minimum material 
cost, minimum weight, an optimum performance feature 
of the motor such as maximum efficiency, torque-to-
current ratio, or some other motor Figures or a 
combination of them. In this paper, two objective 
functions are implemented; to maximize efficiency, and to 
reach the best efficiency and torque-to-volume ratio 
together as it is desired in most hybrid vehicle 
applications. The analytic model is utilized to calculate 
the objective functions. Here, the design variables are the 
ratio of the inner to outer diameter of the stator core, the 
ratio of pole-arc to pole-pitch, and the outer diameter of 
the stator. Due to applications of the machine and some 
other reasons which will be explained shortly, some 
constraints on design variables must be considered. 
Cambel et al. [13] have shown that the ratio of pole-arc to 
pole-pitch,α , should be between 0.75 and 1 to achieve 
minimum copper losses. So one constraint is taken as 

9.075.0 ≤≤ α , and the upper bound is considered as 0.9 
to avoid the flux leakage between two neighbouring 
magnets. Because of construction problems dλ  cannot be 
0 or 1, so the other constraint is taken as 9.01.0 ≤≤ dλ . 
Some constraints also arise due to the specific 
applications. For example, in automotive cases, the 
following constraint should be considered because of the 
wheel dimensions: 

  mDmD oi 35.0,08.0 ≤≥  
A sample of calculations for dimensions, torque and 

efficiency are given in the appendix. 

B.  Genetic Algorithms 
In order to use the GA, the foreseen ranges of the 

design variables are represented by a binary string. The 
string length is 30 bits for 3 design variables. So, 10 bits 
are assigned to each variable and the accuracy 
(quantization) of each variable is 102/1 . Figure 10 shows a 
typical chromosome.  

 
binX3  binX 2  binX1  

0101001110 1110100101 0010110100 
 
Figure 10: A typical chromosome. 

The population size consists of 30 individuals 
(chromosomes) and the probability of crossover and 
mutation are 0.8 and 0.05, respectively. Another operator 
which is used is the "immigrant" with a probability of 
0.05. One can expand chromosomes and also consider the 
other independent variables such as the specific electrical 
and magnetic loadings as design variables. 

To accelerate the search procedure, the decoding of 
substrings are characterised as follows: 

 

(15) 
1024

)(8.01.0 1bin
d

Xdecimal
×+=λ

 

(16) 
1024

)(
15.075.0 3binXdecimal

×+=α
 

(17) 
1024

)(
27.00889.0 2bin

o
Xdecimal

D ×+=
 

 
In this way, a constrained problem is transferred to an 

unconstrained one. 

5.  OPTIMUM RESULTS 

If one applies the optimization algorithm to a primary 
design with the data given in the second column of Table 
2, the results summarized in the third and fourth columns 
of the table are obtained. 

In this paper as it has been mentioned before, the 
objective function is once to maximize the efficiency and 
in another time to reach the best efficiency and torque-to-
volume ratio together, as described by the following 
equation: 

 

volumenormalized
torquenormalized

efficiencyFunctionObjective

*1.0

*9.0 +=

 

(18) 

 
It is worth noting that the efficiency is expressed by a 

normalized number less than 100%, so in (18) the torque 
and volume ought to be normalized. Now, the weighting 
factor of each part of the above formula can be changed 
according to its priority. 

In the calculations of efficiency and torque, the 
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harmonic components of the field are also considered to 
the 31st order. By comparison of the second with the third 
column in Table 2, one can deduce that: 

The number of turns of the winding in the optimum 
design is less than the primitive design 

The volume of the machine has decreased in the 
optimal design 

Also, one can easily Figure out that the copper losses 
are more than the iron losses in this machine, so to 
achieve maximum efficiency the number of turns of the 
winding should be reduced. 

 
 

TABLE 2 
 RESULTS OF THE DESIGN OPTIMIZATION  

Specifications 

Prim
itive design 

(O
F)   is the efficiency 

(O
F)   is the efficiency 

and torque-to-volum
e 

ratio
Inner to outer diameter ratio 0.58 0.5125 0.58 

Pole-arc to pole-pitch ratio 0.85 0.8906 0.8291

Inner diameter of stator core 
(mm) 140 174.2 120.5 

Outer diameter of stator core 
(mm) 242 339.9 241 

Axial length of stator core 
(mm) 22 31.1 20.5 

Axial length of rotor core 
(mm) 13 17.2 12.1 

Axial length of magnets 
(mm) 7.4 2.9 6.8 

Total axial length of 
machine (mm) 85 79.9 80.8 

Number of turns per phase 554 243 510 
Efficiency (%) 84.7 88.14 85.42 
Torque (Nm) 25.44 25.81 25.67 

Volume (
3m ) 0.0043 0.0074 0.004 

6.  CONCLUSION 

An improved analytic model of an axial-flux machine 
was presented in this paper and it was demonstrated that 
by the consideration of the current being distributed in the 
whole cross section area of the winding, more accuracy in 
the prediction of the field could be obtained. The effects 
of the armature reaction and the harmonics of the field 
were also considered. The simulation results of the 
magnetic field by the analytic model were compared with 
the 2-D finite element analysis. It was observed that the 
proposed analytic model predicted the magnetic field very 
accurately within 5% of the finite element method.  

7.  APPENDIX 

The outer diameter of the stator consists of the outer 
diameter of the stator core and the radial thickness of the 
winding as it is shown in Figure a.1, i.e.: 

(a-1) cuoot WDD 2+=  
Using the space factor of the winding, the outer 

thickness of the winding can be expressed as in the 
following: 

(a-2) 

2

2 '
2

o
scu

sg
o

cuo

D
Jk
aD

D
W

−+
=

 

 
Figure a.1: Front view of an axial-flux permanent magnet 
machine with two rotor discs and one slot-less stator disc. 

In the same way: 

(a-3) 

2

2 '
2

scu

sg
ii

cui
Jk
aD

DD
W

−−
=

 
The axial length of the machine is: 

(a-4)gLLL rse 22 ++=  
According to construction experiences, the following 

equation is assumed for sL [14-15]: 

(a-5) cuicss WLL )26.1( →+=  

The axial length of the stator core can be obtained by 
the flux density in the stator core as follows: 

(a-6) 
cs

do
cs pB

DB
L

2
)1( λπ +

=  

The axial length of the rotor core is: 

(a-7) 
cr

dog
cr pB

DB
L

4
)1( λπ +

=  

So the axial length of the rotor will be: 

(a-8) pmcrr lLL +=  

where, pml  is the axial length of the magnets, which is 

calculated in order to have maximum mm HB  and 
minimum volume. 

The flux magnitude in the stator core is dependent on 
the converter frequency, but in the rotor core it is 
approximately constant. Flux density in the stator and 
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rotor cores can be expressed as follows [14]: 

⎪⎩

⎪
⎨
⎧

≤→
>=

−

HzfT
HzffBcs

40)(8.17.1
4047.5 35.0

 
(a-9) 

)(8.16.1 TBcr →=  

The calculation of the electromagnetic torque is based 
on Maxwell’s tension method as in the following: 
 

(a-10) dl
BB

RRpRT yx
iome ∫

⋅
⋅−= λ

µ0
0

)(

rr

 

The total losses are due to the Ohmic losses of the 
stator windings, the eddy current in conductors, core 
losses, and the friction and windage losses. By means of 
analytic model the losses due to harmonic components 
can be considered, too. The efficiency is calculated by the 
following equation: 

(a-11) 
heddeRIme

me
PPPPT

T
++++

=
2ω

ω
η  
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