

A Modified Analytical Approach in Modelling and Design of Axial-Flux Permanent Magnet Machines

Mohammad Mardanehi; Mojtaba Mirsalimii; Mehdi AliAhmadiiii

\textbf{ABSTRACT}

In this paper, a modified analytic approach to the calculation of magnetic field in a slot-less, two-rotor axial-flux permanent magnet machine is presented. The analytic-modelling is based on calculation of scalar and vector magnetic potentials which are produced by the armature windings and the magnets. The magnet and the armature windings are modelled by a magnetization vector and a two-dimensional current sheet, respectively. The effects of the armature reaction and the harmonics of field are also considered. The simulation of magnetic field by the analytic model is compared with that of a two-dimensional finite element analysis. The proposed analytic model predicts the magnetic field within 5\% compared to the finite element method. Ultimately, by using the analytic model in a genetic algorithm method, which is a known method in optimization, an optimum design of an axial-flux permanent magnet machine is presented.

\textbf{KEYWORDS}

\textbf{SYMBOLS}

\begin{itemize}
\item \(A \) Vector potential
\item \(a_s \) Specific electrical loading
\item \(a_e \) Cross section area of wire
\item \(B \) Flux density
\item \(\bar{B} \) Specific magnetic loading
\item \(B_{cr} \) Flux density in rotor core
\item \(B_{cs} \) Flux density in stator core
\item \(B_g \) Flux density in air gap
\item \(D_g \) Mean diameter of stator
\item \(D_i \) Inner diameter of stator core
\item \(D_o \) Outer diameter of stator core
\item \(D_r \) Outer diameter of stator
\item \(f \) Frequency
\item \(g \) Air gap length (magnet to the winding)
\item \(H \) Magnetic field intensity
\item \(J_s \) Current density \((A/mm^2) \)
\item \(K_{eu} \) Copper space factor
\item \(L_{cr} \) Axial length of rotor core
\item \(L_{cs} \) Axial length of stator core
\item \(L_e \) Axial length of machine
\item \(L_r \) Axial length of rotor
\item \(L_s \) Axial length of stator
\item \(I_{pm} \) Axial length of magnets
\item \(M \) Magnetization vector of a magnet
\item \(P_e \) Eddy current losses in conductors
\item \(P_{eda} \) Eddy current losses in cores
\item \(P_h \) Hysteresis losses
\item \(P_{RI} \) Copper losses in stator windings
\item \(p \) Number of poles
\item \(R_i \) Inner radius of stator core
\end{itemize}

i A Modified Analytical Approach in Modelling and Design of Axial-Flux Permanent Magnet Machines.
M. Mardaneh is a Ph.D. candidate in the Department of Electrical Engineering at Amirkabir University of Technology, Tehran, Iran (e-mail: m_mardaneh@aut.ac.ir).
ii M. Mirsalim is with the Department of Electrical Engineering at Amirkabir University of Technology, Tehran, Iran (e-mail: mirsalim@aut.ac.ir).
iii M. AliAhmadi graduated in 2005 from the Department of Electrical Engineering at Amirkabir University of Technology, Tehran, Iran (e-mail: m_aliahmadi@yahoo.com).
1. INTRODUCTION

In general, an axial-flux machine comprises of at least one rotor disc carrying either a slot-less or slotted winding. The stator may be magnetic or non-magnetic depending on the machine topology. Based on these concepts, a large number of axial-flux machine topologies are possible including single-sided, double-sided or multistage design [1]. This paper is focused on the slot-less stator, two-rotor axial-flux permanent magnet machine with North-pole to North-pole (NN) structure.

The axial-flux machines have been modelled by several researchers [1-7]. In one of the latest researches, Bumby et al. [1] have represented the armature windings by a current sheet close to the iron surface of stator. Here, in this article, the authors have considered the current to be distributed in the whole cross section area of the winding, which yields more accuracy in modelling.

Looking inwards in the radial direction, the structure of the machine can be seen as in Figure 1.

2. THE PROPOSED ANALYTICAL MODEL

A. Modelling of Magnets

Due to the symmetry, the analysis can be done on half of the machine as shown in Figure 2, where the x and y-coordinates represent the circumferential and the axial directions, respectively. The model assumes the radial direction to be infinite.

In modelling axial-flux machines, finite element method can be used. However, this method in an iterative optimization algorithm is time consuming if not difficult. Thus, in this paper an analytical model for axial-flux machines is developed and implemented. As it is shown in Figures 2 and 3, the magnetization distribution of the magnet array may be expressed by Fourier's expansion as follows:
\[M(x) = \sum_{n=1,3,5,\ldots} M_n \cos \left(\frac{n\pi x}{2} \right) \],

\[M_n = M \left(\frac{4}{n \pi} \right) \sin \left(\frac{n\pi I_n}{2\lambda} \right) \] \tag{1}

Figure 3: Magnetization distribution of the magnet array.

B. Armature Windings

The three-phase stator windings are shown in Figures 2 and 4. Supposing that \(J_0 \) is the surface current density in each phase, the current density distribution in armature windings can be written as in the following:

\[J(x) = \sum_{n=1,3,5,\ldots} J_n \sin \left(\frac{n\pi}{A} x \right) \]

\[J_n = \frac{2J_0}{n\pi} \left[\frac{1}{2} \cos \left(\frac{n\pi}{3} \right) - \frac{1}{2} \cos \left(\frac{2n\pi}{3} \right) + 1 \right] \] \tag{2}

Figure 4: Current density distribution in the armature windings.

This equation is a new form to represent the current density distribution of armature windings, which has been implemented in the analytical modelling for the first time by the authors.

C. Magnetic Field

The governing equations of the magnetic field are given by the following Maxwell’s equations:

\[\nabla \times \vec{H} = \vec{J} \] \tag{3}

\[\nabla \cdot \vec{B} = 0 \] \tag{4}

The magnetization vector of permanent magnets is considered to be constant and thus, \(\nabla \cdot M = 0 \) and \(\nabla \times M = 0 \). If one recalls that \(\nabla \cdot \vec{A} = 0 \), the Laplace and Poisson equations can be derived from (3) and (4) as in the following in regions 1, 2 and 3:

\[\nabla^2 \varphi_m = 0 \] regions 2, 3 \tag{5}

\[\nabla^2 \vec{A} = -\mu_0 \vec{J} \] region 1 \tag{6}

where, regions 1, 2, and 3 are the stator winding, the air-gap, and the magnets, respectively.

Solving the Laplace and Poisson equations, the flux density can be expressed in each region as follows:

\[\vec{B} = \nabla \times \vec{A} \] region 1 \tag{7}

\[\vec{B} = -\mu_0 \nabla \varphi_m \] region 2 \tag{8}

\[\vec{B} = -\mu_0 \nabla \varphi_m + \mu_0 \vec{M} \] region 3 \tag{9}

D. Calculation of Magnetic Field

Assuming infinitely permeable iron cores, the tangential component of magnetic field intensity is negligible. Therefore, the boundary conditions are as in the following:

\[H_{x1} \bigg|_{y=0} = 0 \Rightarrow \frac{\partial A_1}{\partial y} \bigg|_{y=0} = 0 \] \tag{10-a}

\[H_{x3} = 0 \] \tag{10-b}

Other boundary conditions are:

\[B_{y1} \bigg|_{y=y_1} = B_{y2} \bigg|_{y=y_2} \] \tag{11-a}

\[H_{x2} \bigg|_{y=y_2} = H_{x1} \bigg|_{y=y_1} \] \tag{11-b}

\[B_{y1} \bigg|_{y=y_1} = B_{y3} \bigg|_{y=y_3} \] \tag{11-c}

\[H_{x1} \bigg|_{y=y_1} = H_{x3} \bigg|_{y=y_3} \] \tag{11-d}

The following expressions are obtained for vector and scalar magnetic potentials, where the subscript denotes the number of region, and \(y \)-coordinate represents the axial direction, respectively.

\[A_i(x, y) = \sum_{n=1,3,5,\ldots} \left(S_{1i} e^{\frac{n\pi y}{2\lambda}} + S_{2i} e^{\frac{n\pi y}{2\lambda}} \right) \sin \left(\frac{n\pi x}{A} \right) \]

\[+ \sum_{n=1,3,5,\ldots} \left(C_{1i} e^{\frac{n\pi y}{2\lambda}} + C_{2i} e^{\frac{n\pi y}{2\lambda}} \right) \cos \left(\frac{n\pi x}{A} \right) \] \tag{12}

\[\varphi_i(x, y) = \sum_{n=1,3,5,\ldots} \left(S_{1i} e^{\frac{n\pi y}{2\lambda}} + S_{2i} e^{\frac{n\pi y}{2\lambda}} \right) \sin \left(\frac{n\pi x}{A} \right) \]

\[+ \sum_{n=1,3,5,\ldots} \left(C_{1i} e^{\frac{n\pi y}{2\lambda}} + C_{2i} e^{\frac{n\pi y}{2\lambda}} \right) \cos \left(\frac{n\pi x}{A} \right) \] \tag{13}

\[\varphi_3(x, y) = \sum_{n=1,3,5,\ldots} \left(S_{13} e^{\frac{n\pi x+y}{2\lambda}} + S_{23} e^{\frac{n\pi x+y}{2\lambda}} \right) \sin \left(\frac{n\pi x}{A} \right) \]

\[+ \sum_{n=1,3,5,\ldots} \left(C_{13} e^{\frac{n\pi x+y}{2\lambda}} + C_{23} e^{\frac{n\pi x+y}{2\lambda}} \right) \cos \left(\frac{n\pi x}{A} \right) \] \tag{14}
3. THE RESULTS OF THE MODELLING

A. Analytic Model

The parameters which are used in the analysis are summarized in Table 1[1]. Figure 5 shows the air-gap magnetic flux density for no-load and full-load conditions. One can deduce from this Figure that the armature reaction changes the field in x-coordinate direction, but its effect is small.

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>MACHINE PARAMETERS [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of poles per disc</td>
<td>16</td>
</tr>
<tr>
<td>Magnet width in mean radius</td>
<td>41 mm</td>
</tr>
<tr>
<td>Turns per armature coil</td>
<td>4</td>
</tr>
<tr>
<td>Pole pitch</td>
<td>62 mm</td>
</tr>
<tr>
<td>Magnet material</td>
<td>Nd-Fe-B</td>
</tr>
<tr>
<td>Thickness of winding</td>
<td>3 mm</td>
</tr>
<tr>
<td>(B_{fem})</td>
<td>1.2 T</td>
</tr>
<tr>
<td>Length of air-gap</td>
<td>5 mm</td>
</tr>
<tr>
<td>(\mu_{rec})</td>
<td>1.05</td>
</tr>
<tr>
<td>Thickness of rotor yoke</td>
<td>10 mm</td>
</tr>
<tr>
<td>Output power</td>
<td>40 kW</td>
</tr>
<tr>
<td>Stator yoke thickness</td>
<td>28.4 mm</td>
</tr>
<tr>
<td>Magnet thickness</td>
<td>6 mm</td>
</tr>
<tr>
<td>Mean diameter</td>
<td>316 mm</td>
</tr>
</tbody>
</table>

Figure 5: Magnetic flux density for no-load and full-load conditions in region 2 using analytic method.

Figure 6: The magnetic flux lines for the no-load condition (FEM).

The magnets are mounted on the rotor and the machine has natural ventilation, so one can use relatively high current densities. Here, the current density is assumed \(\frac{6.5}{\text{mm}^2} \) and also, \(x_p = \frac{\lambda}{2} \).

B. FEM

The magnetic flux lines and the flux density distribution for no-load condition are depicted in Figures 6 and 7, respectively.

Figure 7: The flux density distribution for the no-load condition (FEM).

The magnetic flux density (at no load) in regions 2 and 3 are compared with each other and also with FEM in Figure 8. The results demonstrate excellent agreement between the proposed analytic and the finite element methods with a maximum discrepancy of less than 5%.

Figures 9 (a) and (b) which show the plot of the variation of vector potential and axial flux density in the radial direction across the surface of the iron stator core for the 40 kW generator, have been taken from [1]. The flux density plots have been obtained using the analytic expressions and 2-D and 3-D finite element analysis (FEA), whereas the analytic and 2-D FEA have been used for the vector potential.

Figure 8: The magnetic flux density computed with analytic and finite element methods in: a) region 2, b) region 3.

By the comparison of Figure 8 with Figure 9, one can deduce that the magnetic flux density computed with the proposed analytic method resembles the results presented in [1]. As it was written before, the proposed approach is also more accurate.
4. OPTIMAL DESIGN

The genetic algorithm (GA), one of the global optimization methods, is well known as a fine method to optimize the design of electrical machines [8-12]. Here, the authors implemented GA to optimally design an axial-flux machine.

A. The Problem Formulation

This section presents the approach to determine the optimum dimensions of the machine. The objective function (OF) can be considered as minimum material cost, minimum weight, an optimum performance feature of the motor such as maximum efficiency, torque-to-current ratio, or some other motor Figures or a combination of them. In this paper, two objective functions are implemented; to maximize efficiency, and to reach the best efficiency and torque-to-volume ratio together as it is desired in most hybrid vehicle applications. The analytic model is utilized to calculate the objective functions. Here, the design variables are the ratio of the inner to outer diameter of the stator core, the ratio of pole-arc to pole-pitch, and the outer diameter of the stator. Due to applications of the machine and some other reasons which will be explained shortly, some constraints on design variables must be considered. Cambel et al. [13] have shown that the ratio of pole-arc to pole-pitch, \(\alpha \), should be between 0.75 and 1 to achieve minimum copper losses. So one constraint is taken as \(0.75 \leq \alpha \leq 0.9 \), and the upper bound is considered as 0.9 to avoid the flux leakage between two neighbouring magnets. Because of construction problems \(\lambda_d \) cannot be 0 or 1, so the other constraint is taken as \(0.1 \leq \lambda_d \leq 0.9 \). Some constraints also arise due to the specific applications. For example, in automotive cases, the following constraint should be considered because of the wheel dimensions:

\[D_i \geq 0.08 \text{m} , \quad D_o \leq 0.35 \text{m} \]

A sample of calculations for dimensions, torque and efficiency are given in the appendix.

B. Genetic Algorithms

In order to use the GA, the foreseen ranges of the design variables are represented by a binary string. The string length is 30 bits for 3 design variables. So, 10 bits are assigned to each variable and the accuracy (quantization) of each variable is \(1/2^{10} \). Figure 10 shows a typical chromosome.

\[
\begin{array}{c|c|c}
X_{1\text{bin}} & X_{2\text{bin}} & X_{3\text{bin}} \\
0010110100 & 1110100101 & 0101001110 \\
\end{array}
\]

Figure 10: A typical chromosome.

The population size consists of 30 individuals (chromosomes) and the probability of crossover and mutation are 0.8 and 0.05, respectively. Another operator which is used is the "immigrant" with a probability of 0.05. One can expand chromosomes and also consider the other independent variables such as the specific electrical and magnetic loadings as design variables.

To accelerate the search procedure, the decoding of substrings are characterised as follows:

\[
\begin{align*}
\lambda_d &= 0.1 + 0.8 \times \frac{\text{decimal}(X_{1\text{bin}})}{1024} \\
\alpha &= 0.75 + 0.15 \times \frac{\text{decimal}(X_{3\text{bin}})}{1024} \\
D_o &= 0.0889 + 0.27 \times \frac{\text{decimal}(X_{2\text{bin}})}{1024}
\end{align*}
\]

In this way, a constrained problem is transferred to an unconstrained one.

5. OPTIMUM RESULTS

If one applies the optimization algorithm to a primary design with the data given in the second column of Table 2, the results summarized in the third and fourth columns of the table are obtained.

In this paper as it has been mentioned before, the objective function is once to maximize the efficiency and in another time to reach the best efficiency and torque-to-volume ratio together, as described by the following equation:

\[
\text{Objective Function} = 0.9 \times \text{efficiency} + 0.1 \times \frac{\text{normalized torque}}{\text{normalized volume}}
\]

It is worth noting that the efficiency is expressed by a normalized number less than 100%, so in (18) the torque and volume ought to be normalized. Now, the weighting factor of each part of the above formula can be changed according to its priority.

In the calculations of efficiency and torque, the
harmonic components of the field are also considered to the 31st order. By comparison of the second with the third column in Table 2, one can deduce that:

The number of turns of the winding in the optimum design is less than the primitive design

The volume of the machine has decreased in the optimal design

Also, one can easily Figure out that the copper losses are more than the iron losses in this machine, so to achieve maximum efficiency the number of turns of the winding should be reduced.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Primitive design</th>
<th>(OF) is the efficiency</th>
<th>(OF) and torque-to-volume ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner to outer diameter ratio</td>
<td>0.58</td>
<td>0.5125</td>
<td>0.58</td>
</tr>
<tr>
<td>Pole-arc to pole-pitch ratio</td>
<td>0.85</td>
<td>0.8906</td>
<td>0.8291</td>
</tr>
<tr>
<td>Inner diameter of stator core (mm)</td>
<td>140</td>
<td>174.2</td>
<td>120.5</td>
</tr>
<tr>
<td>Outer diameter of stator core (mm)</td>
<td>242</td>
<td>339.9</td>
<td>241</td>
</tr>
<tr>
<td>Axial length of stator core (mm)</td>
<td>22</td>
<td>31.1</td>
<td>20.5</td>
</tr>
<tr>
<td>Axial length of rotor core (mm)</td>
<td>13</td>
<td>17.2</td>
<td>12.1</td>
</tr>
<tr>
<td>Axial length of magnets (mm)</td>
<td>7.4</td>
<td>2.9</td>
<td>6.8</td>
</tr>
<tr>
<td>Total axial length of machine (mm)</td>
<td>85</td>
<td>79.9</td>
<td>80.8</td>
</tr>
<tr>
<td>Number of turns per phase</td>
<td>554</td>
<td>243</td>
<td>510</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>84.7</td>
<td>88.14</td>
<td>85.42</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>25.44</td>
<td>25.81</td>
<td>25.67</td>
</tr>
<tr>
<td>Volume (m³)</td>
<td>0.0043</td>
<td>0.0074</td>
<td>0.004</td>
</tr>
</tbody>
</table>

6. CONCLUSION

An improved analytic model of an axial-flux machine was presented in this paper and it was demonstrated that by the consideration of the current being distributed in the whole cross section area of the winding, more accuracy in the prediction of the field could be obtained. The effects of the armature reaction and the harmonics of the field were also considered. The simulation results of the magnetic field by the analytic model were compared with the 2-D finite element analysis. It was observed that the proposed analytic model predicted the magnetic field very accurately within 5% of the finite element method.

7. APPENDIX

The outer diameter of the stator consists of the outer diameter of the stator core and the radial thickness of the winding as it is shown in Figure a.1, i.e.:

\[D_1 = D_o + 2W_{cuo} \] \hspace{1cm} (a-1)

Using the space factor of the winding, the outer thickness of the winding can be expressed as in the following:

\[W_{cuo} = \sqrt{\frac{D^2_o + 2D_o d_s}{k_{cuo} J_s}} - D_o \] \hspace{1cm} (a-2)

In the same way:

\[L_o = L_s + 2L_r + 2g \] \hspace{1cm} (a-3)

According to construction experiences, the following equation is assumed for \(L_s \) [14-15]:

\[L_s = L_{cs} + (1.6 \rightarrow 2) W_{cuo} \] \hspace{1cm} (a-5)

The axial length of the stator core can be obtained by the flux density in the stator core as follows:

\[L_{cs} = \frac{B_{o} \pi D_o (1 + \lambda_d)}{2 p B_{cs}} \] \hspace{1cm} (a-6)

The axial length of the rotor core is:

\[L_{cr} = \frac{B_{o} \pi D_o (1 + \lambda_d)}{4 p B_{cr}} \] \hspace{1cm} (a-7)

So the axial length of the rotor will be:

\[L_r = L_{cr} + l_{pm} \] \hspace{1cm} (a-8)

where, \(l_{pm} \) is the axial length of the magnets, which is calculated in order to have maximum \(B_m H_m \) and minimum volume.

The flux magnitude in the stator core is dependent on the converter frequency, but in the rotor core it is approximately constant. Flux density in the stator and
rotor cores can be expressed as follows [14]:

\[
B_{cr} = \begin{cases}
 5.47 f^{-0.35} & f > 40 \text{Hz} \\
 1.7 \rightarrow 1.8 (T) & f \leq 40 \text{Hz}
\end{cases}
\]
(a-9)

\[
B_{cr} = 1.6 \rightarrow 1.8 (T)
\]

The calculation of the electromagnetic torque is based on Maxwell’s tension method as in the following:

\[
T_e = p R_m (R_o - R_i) \int \frac{B_x B_y}{\mu_0} dl
\]
(a-10)

The total losses are due to the Ohmic losses of the stator windings, the eddy current in conductors, core losses, and the friction and windage losses. By means of analytic model the losses due to harmonic components can be considered, too. The efficiency is calculated by the following equation:

\[
\eta = \frac{T_e \omega_m}{T_e \omega_m + P_{f2} + P_c + P_{edd} + P_h}
\]
(a-11)

8. REFERENCES

